
Copyright © 2000 by Bob Brown.

State Machines
Bob Brown

Computer Science Department
Southern Polytechnic State University

Introduction

We were able to model combinational circuits with truth tables. If an input to a
combinational circuit changes, the output will change correspondingly. Consider our first
sequential circuit, the S-R latch. The truth table isn’t an adequate model for a sequential
circuit because the output depends upon both the inputs and the state. Finite state
machines, or FSMs, provide a way of thinking about sequential circuits. FSMs are
important in sequential circuit design, programming, compilers, language recognizers,
and many other areas of computer science. A major activity in all areas of computer
science is the construction of models. State machines are one of the most frequently used
model-building tools. It is important for you to learn how to use state machines as
models no matter what area of computer science you pursue.

The S-R Latch

Figure 1 shows the digital logic diagram for an S-
R latch, a simple circuit with memory. It has inputs S and
R and a state Q. The output is identical to the state.
Applying a signal momentarily to S causes Q to enter the
set state if it wasn’t already in that state. When S is
removed, Q remains in the set state. Similarly, asserting R
momentarily causes a transition of Q to the reset state if it
wasn’t already in that state. The input S=R=1 is not
allowed; the behavior of the S-R latch is undefined for this
input. Real S-R latches usually include a second output
Q as a convenience to the circuit designer.

One way to represent the actions of the S-R latch
(and other sequential circuits) is with a characteristic
table, as shown in Figure 2. Q, the current state, is one
of the inputs. Q+ represents the next state. The next
state is sometimes represented as Q(t+1).

The characteristic table is similar to a truth table
except that the state variables appear on both the right
and the left. The present state is on the left and the next
state is on the right. The input variables must be

Q S R Q+

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 Undefined
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 Undefined

Figure 2. Characteristic table for
the S-R latch.

R

S

Q

Figure 1. Digital logic diagram
for an S-R latch.

State Machines

-2-

repeated for each possible state. For this reason, a characteristic table can become quite
large. A characteristic table is a suitable tool for programming a function described as a
state machine, but it is difficult to analyze if there are many states or inputs.

Another, more visual way to represent the actions of a sequential circuit is with a
state transition diagram. A state transition diagram is a directed graph. Nodes
represent states and directed edges represent transitions. Each node is labeled with the
value of the state it represents. Each edge is labeled by the input values that cause the
transition represented by the edge.

Figure 2 shows the state transition diagram
for the S-R latch. The two possible states are
represented by the two nodes. The inputs S and R
are represented by the edges; labels on the edges are
the values of S and R in that order. It is important to
note that the state transition diagram shows only
valid inputs. In particular, the combination S=R=1
does not appear because it is not an input that causes
a valid state transition. Valid inputs that do not
cause transitions are represented by edges that return to the same state.

The purpose of a sequential circuit is to generate an output. For the S-R latch, the
output is identical to the state. This is not necessarily true for more complex sequential
circuits. The output of a state may be shown explicitly by including it in the node labels,
separated from the state variable by a slash. For the S-R latch, the node labels would be
0/0 and 1/1. This says that state 0 produces output 0 and state 1 produces output 1.
Later we will see a model in which the outputs are associated with transitions rather than
states.

Now that we have the idea that a sequential circuit can be represented as a set of
states with transition functions based on inputs, let’s look at a more formal way of
representing that idea.

State Machines

State machines model control processes as functions of time, state variables,
inputs, and outputs. A state machine accepts a sequence of inputs. Each input generates
a new internal state that is a function of the input and the previous state. Each input also
generates an output. Finite state machines are state machines whose state variables,
inputs, and outputs can be enumerated. For example, an oil refinery can be modeled by a
state machine. A traffic signal can be modeled by a finite state machine.

Finite state machines are of theoretic importance to computer science because
they can model many of the concepts of interest in the discipline. You will encounter
finite state machines in the study of sequential circuits, compilers, operating systems, and

0 1

00

01

10

01

00

10

Figure 3. State transition diagram for
the S-R latch.

State Machines

-3-

programming. Finite state machines are of practical importance to students of computer
architecture because they can be implemented directly with digital logic.

One definition of a finite state machine is an ordered four-tuple, M=(Q,V,t,q0)
where Q is a finite set of states, V is the input alphabet—a finite set of symbols, q0 is the
initial state—a member of Q, The transition function t maps the states and inputs onto a
set of state transitions. The output of such a machine is only zero (false) or one (true).
We will consider only deterministic finite state machines.∗ Every nondeterministic finite
state machine has an equivalent deterministic finite state machine.

We can add a set of final states to the definition of a finite state machine. Such a
machine is called a finite state acceptor. A final state that produces an output of true is
called an accepting state.

The S-R Latch as a Finite State Machine

Given a formal definition of a finite state machine, we see that we must specify
one additional condition to make the S-R latch a finite state machine.

The set of states Q of the S-R latch is {0, 1}. The input alphabet V is {00,01,10};
this is the set of values S and R can take on, excluding the undefined case of S=R=1.
The output of the S-R latch is a zero or one according to the state. What is missing is the
start state, q0.

You can construct a set of inputs to the S-R latch such that the output is different
depending upon the initial state. The trivial case is the input 00. The output will be one
if the initial state was one, and zero if the initial state was zero.

In order to treat the S-R latch as an FSM, we must define one of its two states as
the start state. We can choose either the zero state or the one state, but the choice results
in one of two different FSMs.

Finite State Acceptors

There are several set-theoretic models of
finite state machines. The choice of which one
to use depends upon the specific application for
which one is constructing a model.

Consider a vending machine that
accepts nickels and dimes and sells items with a

∗ Finite state machines are also called finite automata. Deterministic finite state machines are also called
deterministic finite automata, often abbreviated DFA.

S0 S1
Unlock

5c 5c

10c

Start

Figure 4. Vending machine example. The final state
is an accepting state.

State Machines

-4-

price of ten cents. A customer can deposit two nickels or a dime to unlock the dispensing
mechanism. We can model such a machine as an Finite state acceptor. The start state is
the state of no money deposited. The inputs are nickels and dimes. We have introduced
a special state—the final or accepting state—that produces an output true which unlocks
the dispensing mechanism. Final states are shown as nodes with double circles. Such a
machine is shown in Figure 4.

Depositing ten cents causes an immediate transition to the unlocked state.
Depositing a nickel causes a transition to an intermediate state, S1. A second nickel
causes a transition to the unlocked state. The unlocked state is a final state with output
true (unlock the mechanism) so this machine is a finite state acceptor. When an item is
dispensed, the machine returns to the start state.

It is important to notice that we have modeled only a part of the operation of a
vending machine. This model captures the essence of a successful transaction, but a lot
of detail has been suppressed. We don’t consider what the machine does if the input is a
penny, nor the details of how the unlocking mechanism works nor the mechanism by
which the machine returns to the start state. In a real-world design, these details are
important.

Moore and Mealy Machines

We have been thinking of finite state machines in the abstract, but it should be
clear that FSMs can be implemented directly using combinational and sequential logic.
A sequential logic (storage) device called a state register provides the necessary state
information. Each possible value of the state register is represented by a node on the
state transition diagram. A state transition diagram with 2n nodes requires an n-bit state
register. The transition function is implemented as combinational logic that has as its
input the inputs to the machine and the state information from the state register.

Let us extend our notion of a finite state machine to one that can produce outputs
other than zero and one. The formal definition becomes a sextuple, M=(Q,V,t,q0,V′,o)
where V′ is the output
alphabet, a finite set of
output symbols, and o
is the output function.
We could choose to
have the output of the
state register serve as
the output of the circuit
as we did with the S-R
latch. However, this
definition of a finite
state machine allows us
more flexibility. The

Inputs
Outputs

Transition
Function

(Combinational
Logic)

Output
Function

(Combinational
Logic)

Clock

State
Register

Figure 5. Moore model finite state machine. Output changes only when signaled
by the clock.

State Machines

-5-

output function o maps the set of states Q onto the output alphabet V′. We can express
this formally as o:Q → V′. This type of output function can be implemented directly in
combinational logic driven by the state register. This is called a Moore model finite state
machine or Moore machine. A conceptual diagram of a Moore machine is shown in
Figure 5. The transition function t is implemented in combinational logic. The inputs to
the machine and the current state from a state register are input to a combinational circuit
that computes the next state. State transitions occur when the state register is enabled by
the clock signal. Although the output is computed by a combinational circuit, its inputs
come from the state register, which can change only when signaled by the clock. This
means that the outputs of a Moore machine change only upon clock signals, and the
outputs are determined by the state. If you think of a Moore machine in terms of a
transition diagram, the outputs are associated with the nodes of the graph.

There is another way of
building a finite state machine with an
output function: use the same combin-
ational logic circuit to compute both
the transition function and the output
function. The inputs to the combina-
tional logic are the inputs to the FSM
and the present state from the state
register. Outputs are a function of
both the present state and the input.
This is the Mealy model finite state
machine or Mealy machine. The definition is the same as the Moore machine, but the
output function maps both the current state and the input alphabet onto the output
alphabet. Formally, the output function is defined as o:Q × V → V′. As you can see from
the conceptual diagram in Figure 6, the outputs of a Mealy machine can change
independent of the clock. Any change in the input can cause a change in the output even
though the state can change only when signaled by the clock. In terms of a state
transition diagram, you can think of the outputs as being associated with the edges of the
graph, the transitions rather than the states. Since the outputs are associated with the
transitions, some functions can be implemented with fewer states using Mealy machines.
A potential disadvantage is that the outputs can change at any time. One way to mitigate
this disadvantage is to place a register in the output path.

Algorithmic State Machines

Finite state machines are a powerful tool for designing sequential circuits, but
they are lacking in that they do not expressly represent the algorithms that compute the
transition or output functions, nor is timing information explicitly represented. We can
recast the idea of a state machine to include a representation of the algorithms. The result
is an algorithmic state machine, or ASM. “The ASM chart separates the conceptual
phase of a design from the actual circuit implementation.” [OSBO73] An algorithmic state
machine diagram is similar to a flowchart. Square boxes represent the states, diamonds

Outputs

Clock

Inputs Transition and
Output

Functions
(Combinational

Logic)

State Register

Figure 6. Mealy model finite state machine. Outputs can
change with the inputs.

State Machines

-6-

represent decisions, and ovals represent outputs. States can also have outputs, and the
outputs associated with a state are listed in the state box. State boxes are labeled with the
state name and possibly with a binary code for the state. The basic unit of an ASM is the
ASM block. An ASM block contains a single state box, a single entry path, and one or
more exit paths to other ASM blocks. Algorithmic state
machines capture the timing of state transitions as well.
The contents of one ASM block represent the actions
during one clock cycle.

Consider a traffic signal that is red in the east-
west direction and green in the north-south direction.
Call that the RG state. When a timer expires the timer
will assert a value of one. That will cause a transition to
the RY state and a value of ten seconds to be loaded into
the timer. The ASM block for this state and transition is
shown in Figure 6.

The ASM block of Figure 7 is enclosed by the
dashed line. There is a single entry and a single state
named RG. The output RG is asserted while in state
RG. An exit from state RG occurs when signaled by the
clock. The timer is checked and if the value is zero, i.e.
if the timer has not expired, an exit which will cause re-
entry to state RG is taken.

In the clock cycle after the timer expires the
timer output value is found to be one. A conditional output causes the timer to be loaded
with the new countdown value 10 and an exit to state RY is taken.

You can infer from this description that the ASM of Figure 7 must be a Mealy
machine because the output that loads the timer is a conditional outputan output not
associated with a state. It is possible to implement ASM blocks using Moore machines.
In that case, there could be no conditional outputs. Generally this means more states are
required. In the example of Figure 6, a state for “RG and timer = 0” and a state for “RG
and timer = 1” would be required. Since each ASM block can represent only one state,
two ASM blocks would be required.

Summary

Finite state machines can be used to model many of the things we deal with in
computer science, from digital sequential circuits to language recognizers. They capture
the idea of a finite number of states with an input alphabet, a transition function, and an
output alphabet. FSMs are important to computer architecture because they may be
implemented directly using sequential and combinational logic. FSMs are one way of
thinking about sequential circuit design. There are two models for implementing FSMs

RG

RG

Timer?

Timer := 10

0 1

Entry

Exit

Exit

To State RY

Figure 7. ASM block showing ASM
symbols. The ASM block is enclosed
within the dashed line.

State Machines

-7-

as digital logic circuits. In the Moore model, the outputs can change only on clock
signals; outputs are associated with the nodes of a state transition diagram. In the Mealy
model, outputs can change with the inputs; the outputs are associated with the edges of
the state transition diagram. The algorithmic state machine captures the algorithms and
timing associated with the transition and output functions.

References

[OSBO73] Osborne, Thomas E. in forward to Clark, Christopher R., Designing Logic
System s Using State Machines, McGraw-Hill, 1973.

Bibliography

Aho, Alfred B., Ravi Sethi and Jeffrey D. Ullman, Compilers, Principles, Techniques,
and Tools, Addison-Wesley, 1986.

Hopcroft, John E., and Jeffrey D. Ullman, Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley, 1979.

Katz, Randy H., Contemporary Logic Design, Benjamin/Cummings, 1994.

Mano, M. Morris and Charles R. Kime, Logic and Computer Design Fundamentals,
Prentice Hall, 1997.

Wood, Derick, Theory of Computation, John Wiley and Sons, 1987.

State Machines

-8-

Exercises

1. Extend the vending machine described in the text to be able to sell items that cost up
to fifty cents.

2. Extend the vending machine of exercise 1 to make change.

3. A traffic signal controls a simple cross intersection. Each state has two outputs, EW
(east-west) and NS (north-south). The outputs can have the values R, Y, and G, for
red, yellow, and green. The rules for the outputs are the familiar rules of the traffic
signal. Draw a state transition diagram that models the function of the traffic signal.

4. The state transition diagram of exercise 3 fails to model a real-world traffic signal
completely. In what way? (Hint: How long does the RY output last in comparison to
the RG and GR outputs? How do you know?)

5. You are given a timer which can be loaded with a number n, and which emits a signal
when n seconds have elapsed. Model the traffic light of exercise 3 using an
algorithmic state machine that incorporates the timer. Make reasonable assumptions
for the time values of outputs R, Y, and G.

6. Draw the state transition diagram for a counter that counts 00, 01, 10, 11, then returns
to 00 and repeats. How many nodes do you have? How many nodes would be
required for an 8-bit counter? What can you say about the effectiveness of the state
transition diagram as a model for a counter?

