Changing times

• From 1986 – 2002, microprocessors were speeding like a rocket, increasing in performance an average of 50% per year.

• Since then, it’s dropped to about 20% increase per year.
An intelligent solution

• Instead of designing and building faster microprocessors, put *multiple* processors on a single integrated circuit.
Now it’s up to the programmers

• Adding more processors doesn’t help much if programmers aren’t aware of them…
• … or don’t know how to use them.

• Serial programs don’t benefit from this approach (in most cases).
Why we need ever-increasing performance

• Computational power is increasing, but so are our computation problems and needs.
• Problems we never dreamed of have been solved because of past increases, such as decoding the human genome.
• More complex problems are still waiting to be solved.
Climate modeling
Protein folding
Drug discovery
Data analysis
Why we’re building parallel systems

• Up to now, performance increases have been attributable to increasing density of transistors.

• But there are inherent problems.
A little physics lesson

- Smaller transistors = faster processors.
- Faster processors = increased power consumption.
- Increased power consumption = increased heat.
- Increased heat = unreliable processors.
Solution

- Move away from single-core systems to multicore processors.
- “core” = central processing unit (CPU)
Why we need to write parallel programs

- Running multiple instances of a serial program often isn’t very useful.
- Think of running multiple instances of your favorite game.
- What you really want is for it to run faster.
Modernization of Scientific Code

- Intel – leader
Approaches to the serial problem

- Rewrite serial programs so that they’re parallel.

- Write translation programs that automatically convert serial programs into parallel programs.
 - This is very difficult to do.
 - Success has been limited.

Copyright © 2010, Elsevier Inc. All rights Reserved
More problems

- Some coding constructs can be recognized by an automatic program generator, and converted to a parallel construct.
- However, it’s likely that the result will be a very inefficient program.
- Sometimes the best parallel solution is to step back and devise an entirely new algorithm.
Example

- Compute n values and add them together.
- Serial solution:

```java
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(...);
    sum += x;
}
```
Example (cont.)

- We have p cores, p much smaller than n.
- Each core performs a partial sum of approximately n/p values.

```c
my_sum = 0;
my_first_i = ... ;
my_last_i = ... ;
for (my_i = my_first_i; my_i < my_last_i; my_i++) {
    my_x = Compute_next_value( ... );
    my_sum += my_x;
}
```

Each core uses its own private variables and executes this block of code independently of the other cores.
Example (cont.)

- After each core completes execution of the code, is a private variable `my_sum` contains the sum of the values computed by its calls to `Compute_next_value`.

- Ex., 8 cores, n = 24, then the calls to `Compute_next_value` return:

 1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9
Example (cont.)

• Once all the cores are done computing their private `my_sum`, they form a global sum by sending results to a designated “master” core which adds the final result.
Example (cont.)

```plaintext
    if (I'm the master core) {
        sum = my_x;
        for each core other than myself {
            receive value from core;
            sum += value;
        }
    } else {
        send my_x to the master;
    }
```
Example (cont.)

<table>
<thead>
<tr>
<th>Core</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>my_sum</td>
<td>8</td>
<td>19</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Global sum

\[8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95\]

<table>
<thead>
<tr>
<th>Core</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>my_sum</td>
<td>95</td>
<td>19</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>
But wait!
There’s a much better way to compute the global sum.
Better parallel algorithm

- Don’t make the master core do all the work.
- Share it among the other cores.
- Pair the cores so that core 0 adds its result with core 1’s result.
- Core 2 adds its result with core 3’s result, etc.
- Work with odd and even numbered pairs of cores.
Better parallel algorithm (cont.)

• Repeat the process now with only the evenly ranked cores.
• Core 0 adds result from core 2.
• Core 4 adds the result from core 6, etc.

• Now cores divisible by 4 repeat the process, and so forth, until core 0 has the final result.
Multiple cores forming a global sum
Analysis

● In the first example, the master core performs 7 receives and 7 additions.

● In the second example, the master core performs 3 receives and 3 additions.

● The improvement is more than a factor of 2!
Analysis (cont.)

• The difference is more dramatic with a larger number of cores.

• If we have 1000 cores:
 – The first example would require the master to perform 999 receives and 999 additions.
 – The second example would only require 10 receives and 10 additions.

• That’s an improvement of almost a factor of 100!
How do we write parallel programs?

• Task parallelism
 – Partition various tasks carried out solving the problem among the cores.

• Data parallelism
 – Partition the data used in solving the problem among the cores.
 – Each core carries out similar operations on it’s part of the data.
15 questions
300 exams
Professor P’s grading assistants

TA#1 TA#2 TA#3
Division of work – data parallelism

TA#1
100 exams

TA#2
100 exams

TA#3
100 exams
Division of work –

task parallelism

Questions 1 - 5

Questions 6 - 10

Questions 11 - 15
Division of work –
data parallelism

```plaintext
sum = 0;
for (i = 0; i < n; i++) {
    x = Compute_next_value(. . .);
    sum += x;
}
```
Division of work – task parallelism

```c
if (I'm the master core) {
    sum = my_x;
    for each core other than myself {
        receive value from core;
        sum += value;
    }
} else {
    send my_x to the master;
}
```

Tasks

1) Receiving
2) Addition
Coordination

• Cores usually need to coordinate their work.
• **Communication** – one or more cores send their current partial sums to another core.
• **Load balancing** – share the work evenly among the cores so that one is not heavily loaded.
• **Synchronization** – because each core works at its own pace, make sure cores do not get too far ahead of the rest.
What we’ll be doing

• Learning to write programs that are explicitly parallel.
• Using the C/C++ language.
• Using three different extensions to C/C++.
 – Message-Passing Interface (MPI)
 – Posix Threads (Pthreads)
 – OpenMP
Type of parallel systems

• Shared-memory
 – The cores can share access to the computer’s memory.
 – Coordinate the cores by having them examine and update shared memory locations.

• Distributed-memory
 – Each core has its own, private memory.
 – The cores must communicate explicitly by sending messages across a network.
Type of parallel systems

Shared-memory Distributed-memory
Terminology

• Concurrent computing – a program is one in which multiple tasks can be *in progress* at any instant.

• Parallel computing – a program is one in which multiple tasks *cooperate closely* to solve a problem

• Distributed computing – a program may need to cooperate with other programs to solve a problem.