Formulas for Magnetic Fields and AC Circuits

Force on a Moving Particle in a Magnetic Field → \[\vec{F} = q \vec{v} \times \vec{B} \]

Current in a Straight Wire → \[\vec{F} = I \vec{L} \times \vec{B} \]

Torque on a Current Carrying Coil in a Magnetic Field → \[\vec{\tau} = N A \vec{v} \times \vec{B} \]

Magnetic Fields Produced by Currents in a Solenoid → \[\vec{B} = \mu_0 n I / \pi r \]

Ampère's Law → \[\oint \vec{B} \cdot d\vec{l} = \mu_0 I \text{ around currents} \]

Motional EMF → \[\vec{E} = v \vec{B} \]

Magnetic Flux → \[\Phi = B A \cos \theta \]

Faraday's Law → \[\vec{E} = -\frac{N \Delta \Phi}{\Delta t} \]

Mutual Inductance → \[E_m = -M \frac{I_1}{dt} \]

Self Inductance → \[E = -L \frac{dI}{dt} \]

Inductance of a Solenoid → \[L = \frac{\mu_0 n^2 L}{\pi} \]

Energy Density in a Magnetic Field → \[\frac{E}{V} = \frac{1}{2} \mu_0 B^2 \]

Transformers \[V_s/V_p = N_s/N_p \] and \[I_s/I_p = N_p/N_s \]

AC Circuits → **Impedance** → \[Z = \sqrt{R^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2} \]

Resonant Frequency → \[f_0 = \frac{1}{2\pi \sqrt{LC}} \]

Speed of Light → \[c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} \]

Intensities of Light → \[S = \frac{1}{\mu_0} \vec{E} \times \vec{B} = \frac{\text{Power of Light}}{\text{Unit Area}} \]

Wavelength of Light → \[\lambda = \frac{c}{f} \]