On Computing Resilient Virtual Backbone in Cognitive Radio Networks

Yi Hong1, Donghyun Kim2, Deying Li1, Jiaofei Zhong3, and Alade O. Tokuta2

1Renmin University of China, Beijing, China
2North Carolina Central University, Durham, USA
3University of Central Missouri, Warrensburg, USA

Background

- licensed spectrum bands, e.g. cell phone network
 - lower utilization, especially rural area

- cognitive radio network (CRN)
 - primary users (PUs)
 - rightful (paid) users of cell phone spectrum bands
 - cognitive users (CUs)
 - opportunistically use idle licensed spectrum bands for communication
 - must release the bands for the primary user once active

- a supplementary network: a way to provide communication capacity for resource hungry unlicensed spectrum band users
How CRN Works?

• CRN is a temporal network of CUs using licensed bands

• each CU detects any idle licensed spectrum bands
 • if two neighboring CUs share a common idle band, they can use it for the communication
 • once PU of the idle band becomes active, the CUs have to stop using the licensed band for the PU

• energy-efficiency is still an important issue of CRN
 • frequently, each CU is a battery-operated mobile node
 • however, routing information is likely to be invalidated by PU activities even in static CRN
a dominating set (DS) is subset of nodes such that
(a) each node is either in the subset or
(b) neighboring to a node in the subset
a subset of nodes is a connected dominating set (CDS) if
(a) it is a DS and
(b) the sub-graph induced by the subset is connected
Maximal Independent Set and CDS

- **independent set (IS) of** G
 - a subset of $V(G)$ such that no two nodes in the subset are adjacent in G

- **maximal independent set (MIS) of** G
 - an independent set I of G such that for any $v \in V(G) - I$
 $I \cup \{v\}$ is not an independent set

- an MIS is a DS
- computing an MIS and add more nodes to the MIS is a popular to compute a CDS
Virtual Backbone and CDS

- virtual backbone
 - connected subset of nodes responsible for message routing
 - CDS can serve as a virtual backbone in wireless networks
Advantage of Virtual Backbone

<table>
<thead>
<tr>
<th>regular (flooding-based) routing</th>
<th>routing over virtual backbone</th>
</tr>
</thead>
<tbody>
<tr>
<td>• redundant</td>
<td>• smaller routing path search space</td>
</tr>
<tr>
<td>• heavy collision and interference overhead</td>
<td>• any routing scheme becomes more efficient</td>
</tr>
<tr>
<td>• energy inefficient</td>
<td></td>
</tr>
</tbody>
</table>

- size is an important metric
- computing a minimum CDS is NP-hard
 - cannot expect to compute an optimal solution in polynomial time
 - polynomial time approximation algorithm (sub-optimal algorithms with performance guarantee) is a popular subject
Motivation

- most virtual backbone construction algorithms for wireless networks focus on
 - minimizing size for efficiency
 - considering battery level of nodes for lifetime maximization
- computing virtual backbone in CRNs [4]
 - given a node-weighted (remaining energy level) network graph find a CDS such that
 - objective 1: maximize minimum node weight in the CDS
 - objective 2: minimize the size of the CDS
Motivation – cont’

- lifetime of a CDS in wireless network is mostly affected by battery-lifetime
- however, CRN is a temporal network
 - depending on PU activities, link availability changes
 - lifetime of CDS in CRN is highly dependent on PU activities
- better formulation for maximum lifetime (fault-tolerant) CDS would be
 - consider an edge-weighted (expected lifetime of link connectivity) graph
 - find a spanning tree of the graph such that
 - objective 1: maximize the minimum edge weight of the tree
 - objective 2: minimize the number of the non-left nodes (CDS nodes) in the tree
Notations

• $G = (V, E)$ is a graph with node set $V = V(G)$ and edge set $E = E(G)$
• Given $V' \subseteq V$, $G[V']$ is a subgraph of G induced by V'
• Given $E' \subseteq E$, $G[E']$ is a subgraph of G induced by E'
• $CU = \{CU_1, \ldots, CU_n\}$: $n \geq 1$ CUs
• $PU = \{PU_1, \ldots, PU_m\}$: $m \geq 2$ PUs
• $C = \{c_1, \ldots, c_i\}$: the set of available spectrum bands
• C_i is the set of spectrum bands licensed to PU_i
 • C_i and C_j are not necessarily disjoint for each i and j pair
 • at any moment, PU_i is either actively using $c_h \in C_i$ or not
Problem Definition

• suppose $A_j \subseteq C$ is the subset of channels to CU_j
• by [5], the activities of PU_j is modeled as a continuous time semi-Markov process
 • $X_{(c,j)}$, the time duration some channel c is available to CU_j, $\lambda_{(c,j)} e^{-\lambda_{(c,j)} X_{(c,j)}}$ for each $j = 1, 2, \cdots, m$
 • $E(X_{(c,j)}) = \lambda_{(c,j)}$ is the expected value of $X_{(c,j)}$: known
• Definition 1. Lifetime of a Communication Link
 • consider C_i and C_j sharing a set of commonly available channels c_1, \cdots, c_p
 • the expected lifetime of the communication link is $\rho(e_{(i,j)}) = \max_{1 \leq q \leq p} \{\min[E(X_{(q,i)}), E(X_{(q,j)})]\}$
Problem Definition – cont’

- Definition 2. Lifetime of a Connected Network
 - given a connected network \(G \), its lifetime is
 \[
 \rho(G) = \max\{\rho | \text{deleting all communication links with expected lifetime less than } \rho \text{ cannot cause } G \text{ disconnected}\}
 \]

- given a positive integer \(k \), a graph \(G \) if \(k \)-edge-connected
 if \(G \) is connected after removing any combination of \(k \) edges

- Definition 3. \(k \)EC\(k \)DS
 - given a graph \(G = (V, E) \), a subset \(D \) of \(V \) is a \(k \)-edge-connected
 \(k \)-dominating set of \(G \) if \(G[D] \) is
 - \(k \)-edge-connected, and
 - for each node \(u \) in \(V - D \), \(u \) is connected to at least \(k \) nodes in \(D \) in the original graph \(G \)
Problem Definition – cont’

• Definition 4. Lifetime of D, a kECKDS
 • internal lifetime: the minimum amount of time that makes kECKDS disconnected
 • external lifetime: the minimum amount of time that any node outside kECKDS is disconnected from kECKDS
 • lifetime of kECKDS: minimum of internal lifetime and external lifetime, i.e. the minimum time kECKDS loses its function
 $$\rho(D) = \min[\rho(D_{in}), \rho(D_{out})]$$

• Definition 5. MLSVB
 • given a CRN $G = (V, E)$ of n CUs and a positive constant k, MLSVB is to find a CDS D of G such that
 • D is kECKDS of G
 • lifetime of D is maximized, and
 • size of D is minimized.
MLSVBA: Heuristic Algorithm for MLSVB in CRN

- maximum lifetime sturdier virtual backbone algorithm
- a 3-stage polynomial time heuristic algorithm

Algorithm 1 MLSVBA \((G = (V, E), L = \{\rho(e) | \forall e \in E\})\)

1. \(G^{(1)} \leftarrow \text{TRIMMER} (G, L)\).
2. \(G^{(2)} \leftarrow \text{LIFETIME-MAXIMIZER} (G^{(1)}, L)\).
3. \(S \leftarrow \text{SIZE-MINIMIZER} (G^{(1)}, G^{(2)})\).
4. Return \(S\).
MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

• TRIMMER
 • gradually remove all edges whose lifetimes are expected to be short such that the residual graph is still k-edge-connected

Algorithm 2 TRIMMER (G, L)

1: Let $\rho_1 < \cdots < \rho_l$ be the list of distinct lifetime levels in L.
2: $E^{(1)} \leftarrow E$.
3: for $i = 1$ to l do
4: $E_i = \{e | \rho(e) = \rho_i$ and $e \in E^{(1)}\}$.
5: if the graph induced by $(V, E^{(1)} \setminus E_i)$ is still k-edge-connected then
6: $E^{(1)} \leftarrow E^{(1)} \setminus E_i$.
7: else
8: break;
9: end if
10: end for
11: Return $G^{(1)} = (V, E^{(1)})$.

MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

- LIFETIME-MAXIMIZER
 - further remove any short-living edges such that the residual graph include a feasible solution

Algorithm 3 LIFETIME-MAXIMIZER \((G^{(1)}, L)\)

1: Let \(\rho_1 < \cdots < \rho_i\) be the list of distinct lifetime levels in \(L\).
2: \(E^{(2)} \leftarrow E^{(1)}\).
3: for \(i = 1\) to \(i\) do
4: \(E_i = \{ e | \rho(e) = \rho_i \text{ and } e \in E^{(2)} \} \).
5: if the graph induced by \((V, E^{(2)} \setminus E_i)\) has a connected component containing a \(k\)EC\&DS of \(G^{(1)}\) then
6: \(E^{(2)} \leftarrow E^{(2)} \setminus E_i\).
7: else
8: break;
9: end if
10: end for
11: Return \(G^{(2)} = (V, E^{(2)})\).
MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

- **SIZE-MINIMIZER**
 - find a feasible solution of $kECKDS$ from the output of the second stage

```
Algorithm 4 SIZE-MINIMIZER ($G^{(1)}, G^{(2)}$)

1: $S \leftarrow V$. Let $G_i = (V_i^{(2)}, E_i^{(2)})$, $1 \leq i \leq c$, be $c$ connected components in $G^{(2)}$.
2: for $i = 1$ to $c$ do
3: \hspace{1em} $S_1^i \leftarrow$ CONSTRUCT $kECKDS$ ($G_i$).
4: \hspace{1em} if $S_1^i$ can $k$-dominate $V \setminus V_i^{(2)}$ in $G^{(1)}$ then
5: \hspace{2em} $S_i \leftarrow S_1^i$.
6: \hspace{1em} else
7: \hspace{2em} $S_2^i \leftarrow$ FIND $k$-DSC ($V_i^{(2)} \setminus S_1^i, U$), where $U \leftarrow \{v|v \in V \setminus V_i^{(2)}$ and $v$ is not $k$-dominated by $S_1^i\}$.
8: \hspace{2em} $S_i \leftarrow S_1^i \cup S_2^i$.
9: \hspace{1em} end if
10: \hspace{1em} while $S_i$ is not $k$-edge connected do
11: \hspace{2em} Construct a minimum CDS (MCDS) $S_i'$ of $S_i$ from $V_i^{(2)} \setminus S_i$ using Guha et al.’s approach [3] and set $S_i \leftarrow S_i' \cup S_i'$.
12: \hspace{1em} end while
13: \hspace{1em} If $|S_i'| < |S|$, then $S \leftarrow S_i$.
14: end for
15: Return $S$.
```
MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

- **SIZE-MINIMIZER**
 - find a feasible solution of kECkDS from the output of the second stage

```
Algorithm 4 SIZE-MINIMIZER $(G^{(1)}, G^{(2)})$

1: $S \leftarrow V$. Let $G_i = (V_i^{(2)}, E_i^{(2)}), 1 \leq i \leq c$, be $c$ connected components in $G^{(2)}$.
2: for $i = 1$ to $c$ do
3:     $S^1_i \leftarrow \text{CONSTRUCT}k\text{EC}k\text{DS} (G_i)$.
4:     if $S^1_i$ can $k$-dominate $V \setminus V_i^{(2)}$ in $G^{(1)}$ then
5:         $S_i \leftarrow S^1_i$.
6:     else
7:         $S^2_i \leftarrow \text{FIND}k\text{ADSC} (V_i^{(2)} \setminus S^1_i, U)$, where $U \leftarrow \{v|v \in V \setminus V_i^{(2)} \text{ and } v \text{ is not } k\text{-dominated by } S^1_i\}$.
8:         $S_i \leftarrow S^1_i \cup S^2_i$.
9:     end if
10:     while $S_i$ is not $k$-edge connected do
11:         Construct a minimum CDS (MCDS) $S'_i$ of $S_i$ from $V_i^{(2)} \setminus S_i$ using Guha et al.'s approach [3] and set $S_i \leftarrow S_i \cup S'_i$.
12:     end while
13:     if $|S_i| < |S|$, then $S \leftarrow S_i$.
14: end for
15: Return $S$.
```

if S^1_i cannot k-dominate the all other nodes, all more nodes by solving a minimum weight set-cover problem
MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

- **SIZE-MINIMIZER**
 - find a feasible solution of kECKD from the output of the second stage

```
Algorithm 4 SIZE-MINIMIZER $(G^{(1)}, G^{(2)})$

1: $S \leftarrow V$. Let $G_i = (V_i^{(2)}, E_i^{(2)}), 1 \leq i \leq c$, be $c$ connected components in $G^{(2)}$.
2: for $i = 1$ to $c$ do
3:     $S_i^1 \leftarrow$ CONSTRUCTKECKD $(G_i)$.
4:     if $S_i^1$ can $k$-dominate $V \setminus V_i^{(2)}$ in $G^{(1)}$ then
5:         $S_i \leftarrow S_i^1$.
6:     else
7:         $S_i^2 \leftarrow$ FINDKMDSC $(V_i^{(2)} \setminus S_i^1, U)$, where $U \leftarrow \{v | v \in V \setminus V_i^{(2)}$ and $v$ is not $k$-dominated by $S_i^1\}$.
8:         $S_i \leftarrow S_i^1 \cup S_i^2$.
9: end if
10: while $S_i$ is not $k$-edge connected do
11:     Construct a minimum CDS (MCDS) $S'_i$ of $S_i$ from $V_i^{(2)} \setminus S_i$ using Guha et al.’s approach [3] and set $S_i \leftarrow S_i \cup S'_i$.
12: end while
13: if $|S_i| < |S|$, then $S \leftarrow S_i$.
14: end for
15: Return $S$.
```
MLSVBA: Heuristic Algorithm for MLSVB in CRN – cont’

- SIZE-MINIMIZER
 - find a feasible solution of kECKDS from the output of the second stage

Algorithm 4 SIZE-MINIMIZER $(G^{(1)}, G^{(2)})$

1: $S \leftarrow V$. Let $G_i = (V_i^{(2)}, E_i^{(2)}), 1 \leq i \leq c$, be c connected components in $G^{(2)}$.
2: for $i = 1$ to c
3: $S_i^1 \leftarrow$ CONSTRUCT$MkECKDS$ (G_i).
4: if S_i^1 can k-dominate $V \setminus V_i^{(2)}$ in $G^{(1)}$ then
5: $S_i \leftarrow S_i^1$.
6: else
7: $S_i^2 \leftarrow$ FIND$MkCDS$ $(V_i^{(2)} \setminus S_i^1, U)$, where $U \leftarrow \{v \mid v \in V \setminus V_i^{(2)}$ and v is not k-dominated by $S_i^1\}$.
8: $S_i \leftarrow S_i^1 \cup S_i^2$.
9: end if
10: while S_i is not k-edge connected do
11: Construct a minimum CDS (MCDS) S_i' of S_i from $V_i^{(2)} \setminus S_i$ using Guha et al.’s approach [3] and set $S_i \leftarrow S_i \cup S_i'$.
12: end while
13: If $|S_i| < |S|$, then $S \leftarrow S_i$.
14: end for
15: Return S.

try to find the minimum size one
Conclusion

• the first paper studies fault-tolerance issue of virtual backbone construction in CRN

• a 3-staged polynomial time heuristic algorithm is proposed

• plan to
 • analysis the complexity of the problem
 • analysis the performance of the proposed algorithm
 • run the simulation to evaluate the average performance
 • distributed algorithm
Thank you
Question?