Problem 1 - 1ex

Let

\[A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix} \]

Solve for \(X \) the matrix equation

\[A + 2X = B \]

Do it first by adding matrices on the left hand side and then comparing the entries of the resulting matrix and matrix \(B \). Then solve it again using matrix algebra.

Problem 2 - 2ex

(a) Let

\[A = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix} \]

Compute \(A^T + A \).

(b) Show that for any square matrix \(\frac{A^T + A}{2} \) is a symmetric matrix.

Problem 3 - 2ex

Let \(A \) be a square matrix. For which combinations of scalars \(\alpha \) and \(\beta \) the matrix \(\alpha A^T + \beta A \) is a symmetric matrix.

Problem 4 - 1ex

Let \(A \) and \(B \) are two symmetric matrices. Show that \(A + B \) is symmetric.

Problem 5 - 1ex

Let \(A \) and \(B \) are two symmetric matrices. For which combinations of scalars \(\alpha \) and \(\beta \) the matrix \(\alpha A + \beta B \) is a symmetric matrix.

Problem 6 - 1ex

Let \(A \) be a symmetric matrix. Show the matrix \(\alpha I + A \) is a symmetric matrix.
Problem 7 - 2ex

Let A and B are two square matrices. Let $C = A - B$ is a symmetric matrix. What does that tell you about matrices A and B?

Problem 8 - 1ex

A matrix is an upper triangular matrix if all its entries under the diagonal are 0. Let A and B are two upper triangular matrices. For which combinations of scalars α and β the matrix $\alpha A + \beta B$ is an upper triangular matrix.