1 Group A

Problem 1.(3pts)

Prove the following statement.

Statement: Let \(m \) be a composite number. Then there exists a prime number \(p \) such that \(p|m \).

Recall:

An integer is a composite number if it can be written as a product of two integer numbers, 0 and 1 excluded.

This statement is a basic step in proving the Fundamental Theorem of Arithmetic (a.k.a Factorization Theorem). Hence Factorization Theorem can not be used to prove the statement.

Problem 2.(3pts)

Let \(m \) and \(r \) be two positive integers, and \(p \) a prime. Under which condition on \(m \) and \(r \) \(\sqrt[p]{m} \) is an irrational number. Prove it.

Problem 3.(2pts)

Two statements are given:

Statement A: Let \(a \) and \(b \) be two integers and \(p \) a prime. Then

\[
p|ab \implies p|a \lor p|b.
\]

Statement B: Let \(m \) and \(r \) be two positive integers and \(p \) a prime. Then

\[
p|m^r \implies p|m.
\]

Prove that Statement A implies Statement B.

2 Group B

Problem 1.(3pts)

Let \(x \) and \(y \) be two integers. Prove that

\[
3|(x - y) \implies 3|(x - y)^3
\]
Problem 2. (2pts)
Let \(r \) be an integer greater than 2. Prove that \(\sqrt{5} \) is an irrational number.

Problem 3. (3pts)
Let \(m \) be an integer. Prove that \(3|m \) iff the sum of its digits is divisible by 3.

3 Group C

Problem 1. (2pts)
Let \(x \) and \(y \) be two integers. Prove that
\[
3|(x - y) \implies 3|(x - y)^2
\]

Problem 2. (2pts)
Write the contrapositive of the following statements.
(a) If \(3|m \) \(\land \) \(2|m \) then \(6|m \).
(b) If a sequence is convergent then it is bounded.

Problem 3. (2pts)
Let \(m \) be an integer. Prove
\[
3|m^3 \implies 3|m
\]

Problem 4. (2pts)
Let \(m \) be an integer smaller than 10000. Prove that \(9|m \) iff the sum of its digits is divisible by 9.