introduction into Mathematical Systems
Math3390
Spring 2010
Relations - Assignment

Group A

1 Problem - 5pts
Let P and Q be two equivalence relations on a set Ω. Show that $R = P \cap Q$ is also an equivalence relation on Ω. What are the equivalence classes of R?

2 Problem - 5pts
Two polynomials are related if $p(1) = q(1)$. Is this relation an equivalence relation on the set of all polynomials? If it is, determine the distinct equivalence classes.

3 Problem - 5pts
Let $A = \{a, b, c, d, e, f\}$. Let $S = \{(a, f), (d, c), (f, e)\}$. Find an equivalence relation R on A such that R is the smallest equivalence relation containing S. The smallest means that if there is another equivalence relation W containing S, then $R \subseteq W$.

4 Problem - 5pts
Let $A = [1, 2]$ and $B = [4, 7]$. Prove that $A \equiv B$, i.e., A is equipotent to B. Important: When you find the bijection from A to B you need to prove it is a bijection.

Group B

5 Problem - 5pts
Let \approx be a relation on a set of all integers defined by

\[a \approx b \text{ if } 7 \mid 2a + 5b. \]

Is \approx is an equivalence relation? If it is, determine the distinct equivalence classes.

6 Problem - 5pts
Let R be an equivalence relation on a set Ω. Let aRb, bRc, and cRd. Is then aRd? Explain.
7 Problem - 5pts

Let \(\approx \) be an equivalence relation on the set \(\Omega = \{a, b, c, d, e, f, g, h\} \). The equivalence classes are

\[
[a] = \{a, b, c\}, \quad [d] = \{d, e, f, g\}, \quad [h] = \{h\}
\]

Reconstruct \(\approx \), i.e., write down all possible elements of the relation.

8 Problem - 5pts

Let \(A \) be a set of all numbers divisible by 3. Show that \(A \equiv B \), i.e., \(A \) is equipotent to \(B \).

Important: When you find the bijection from \(A \) to \(\mathbb{Z} \) you need to prove it is a bijection.

Group C

9 Problem - 4pts

A relation \(\asymp \) is defined on \(\mathbb{Z} \) by

\[
n \asymp k \quad \text{if} \quad n^2 + k^2 \text{ is even}.
\]

Is \(\asymp \) is an equivalence relation? If it is determine the distinct equivalence classes.

10 Problem - 4pts

Let \(A = \{1, 2, 3, 4\} \). Define a relation on \(A \) which is reflexive and transitive but not symmetric.

11 Problem - 4pts

Let \(|\) be a relation on a set of all integers defined by

\[
a \mid b \quad \text{if} \quad 5 \mid a^2 + 4b^2.
\]

Is \(|\) is an equivalence relation? If it is determine the distinct equivalence classes.

12 Problem - 4pts

A relation \(\approx \) defined on the set \(\mathbb{N} \). We say \(n \approx k \) if both integers contain same power of 2 as a factor in their prime factorization.

For example \(24 \approx 40 \) because \(24 = 2^3 \cdot 3 \) and \(40 = 2^3 \cdot 5 \).

Is \(\approx \) is an equivalence relation? If it is determine the distinct equivalence classes.
Problem - 4pts

Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be defined as \(f(n) = n^2 + n - 1 \).

(a) Is \(f \) a one-to-one function? Prove or disprove.
(b) Is \(f \) an onto function? Prove or disprove.
(c) Is \(f \) a bijection? Prove or disprove.