Ad hoc and Sensor Networks
Topology control
Goals of this chapter

- Networks can be too dense – too many nodes in close (radio) vicinity
- This chapter looks at methods to deal with such networks by
 - Reducing/controlling transmission power
 - Deciding which links to use
 - Turning some nodes off
- Focus is on basic ideas, some algorithms
 - Complexity results are only very superficially covered
Overview

- *Motivation, basics*
- Power control
- Backbone construction
- Clustering
- Adaptive node activity
Motivation: Dense networks

- In a very dense networks, too many nodes might be in range for an efficient operation
 - Too many collisions/too complex operation for a MAC protocol, too many paths to chose from for a routing protocol, ...

- Idea: Make **topology** less complex
 - **Topology**: Which node is able/allowed to communicate with which other nodes
 - Topology control needs to maintain invariants, e.g., connectivity
Options for topology control

- **Topology control**
 - Control **node** activity – deliberately turn on/off nodes
 - Control **link** activity – deliberately use/not use certain links

Flat network – all nodes have essentially same role

- Power control

Hierarchical network – assign different roles to nodes; exploit that to control node/link activity

- Backbones
- Clustering
Flat networks

- Main option: Control transmission power
 - Do not always use maximum power
 - Selectively for some links or for a node as a whole
 - Topology looks “thinner”
 - Less interference, …

- Alternative: Selectively discard some links
 - Usually done by introducing hierarchies
Hierarchical networks – backbone

- Construct a **backbone** network
 - Some nodes “control” their neighbors – they form a (minimal) **dominating set**
 - Each node should have a controlling neighbor
 - Controlling nodes have to be connected (backbone)
 - Only links within backbone and from backbone to controlled neighbors are used
- Formally: Given graph \(G=(V,E) \), construct \(D \in V \) such that

\[
\forall v \in V : v \in D \lor \exists d \in D : (v, d) \in E
\]
Hierarchical network – clustering

- **Construct clusters**
 - Partition nodes into groups ("clusters")
 - Each node in exactly one group
 - Except for nodes "bridging" between two or more groups
 - Groups can have **clusterheads**
 - Typically: all nodes in a cluster are direct neighbors of their clusterhead
 - Clusterheads are also a dominating set, but should be separated from each other – they form an **independent set**
- Formally: Given graph \(G=(V,E) \), construct \(C \subseteq V \) such that

\[
\forall v \in V - C : \exists c \in C : (v, c) \in E \\
\forall c_1, c_2 \in C : (c_1, c_2) \not\in E
\]
Aspects of topology-control algorithms

- **Connectivity** – If two nodes connected in G, they have to be connected in G^0 resulting from topology control

- **Stretch factor** – should be small
 - *Hop stretch factor*: how much longer are paths in G^0 than in G?
 - *Energy stretch factor*: how much more energy does the most energy-efficient path need?

- **Throughput** – removing nodes/links can reduce throughput, by how much?

- Robustness to mobility

- Algorithm overhead
Example: Price for maintaining connectivity

- Maintaining connectivity can be very “costly” for a power control approach
- Compare power required for connectivity compared to power required to reach a very big maximum component

![Graph showing Maximum component size and Probability of connectivity vs Maximum transmission range and Average size of the largest component.](image-url)
Overview

- Motivation, basics
- **Power control**
- Backbone construction
- Clustering
- Adaptive node activity
Power control – magic numbers?

• Question: What is a good power level for a node to ensure “nice” properties of the resulting graph?
• Idea: Controlling transmission power corresponds to controlling the number of neighbors for a given node
• Is there an “optimal” number of neighbors a node should have?
 • Is there a “magic number” that is good irrespective of the actual graph/network under consideration?
• Historically, k=6 or k=8 had been suggested as such “magic numbers”
 • However, they optimize progress per hop – they do not guarantee connectivity of the graph!!
 ! Needs deeper analysis
Controlling transmission range

- Assume all nodes have identical transmission range $r = r(|V|)$, network covers area A, V nodes, uniformly distr.

- Fact: Probability of connectivity goes to zero if:

$$r(|V|) \leq \sqrt{\frac{(1-\epsilon)A\log |V|}{\pi |V|}}$$

, for any $\epsilon > 0$

- Fact: Probability of connectivity goes to 1 for

$$r(|V|) \geq \sqrt{\frac{A(\log |V|+\gamma |V|)}{\pi |V|}}$$

if and only if $\gamma_{|V|} > 1$ with $|V|$

- Fact (uniform node distribution, density ρ):

$$P(G \text{ is } k\text{-connected}) \approx \left(1 - \sum_{l=0}^{k-1} \frac{(\rho \pi r^2)^l}{l!} e^{-\rho \pi r^2}\right)$$
Controlling number of neighbors

- Knowledge about range also tells about number of neighbors
 - Assuming node distribution (and density) is known, e.g., uniform

- Alternative: directly analyze number of neighbors
 - Assumption: Nodes randomly, uniformly placed, only transmission range is controlled, identical for all nodes, only symmetric links are considered

- Result: For connected network, required number of neighbors per node is $\Theta(\log |V|)$
 - It is not a constant, but depends on the number of nodes!
 - For a larger network, nodes need to have more neighbors & larger transmission range! – Rather inconvenient
 - Constants can be bounded
Some example constructions for power control

- Basic idea for most of the following methods: Take a graph \(G=(V,E) \), produce a graph \(G^0=(V,E^0) \) that maintains connectivity with fewer edges
 - Assume, e.g., knowledge about node positions
 - Construction should be local (for distributed implementation)
Example 1: Relative Neighborhood Graph (RNG)

- Edge between nodes u and v if and only if there is no other node w that is closer to either u or v
- Formally: $\forall u, v \in V : (u, v) \in E' \iff \forall w \in V : \max\{d(u, w), d(v, w)\} < d(u, v)$

- RNG maintains connectivity of the original graph
- Easy to compute locally
- But: Worst-case spanning ratio is $\Omega(|V|)$
- Average degree is 2.6

This region has to be empty for the two nodes to be connected
Example 2: Gabriel graph

- Gabriel graph (GG) similar to RNG
- Difference: Smallest circle with nodes u and v on its circumference must only contain node u and v for u and v to be connected
- Formally:
 \[\forall u, v \in V : (u, v) \in E' \iff \exists w \in V : d^2(u, w) + d^2(v, w) < d^2(u, v) \]
- Properties: Maintains connectivity, Worst-case spanning ratio \(\Omega(|V|^{1/2}) \), energy stretch \(O(1) \) (depending on consumption model!), worst-case degree \(\Omega(|V|) \)
Example 3: Delaunay triangulation

- Assign, to each node, all points in the plane for which it is the closest node
 - Voronoi diagram
 - Constructed in $O(|V| \log |V|)$ time
- Connect any two nodes for which the Voronoi regions touch
 - Delaunay triangulation
- Problem: Might produce very long links; not well suited for power control

Voronoi region for upper left node

Edges of Delaunay triangulation
Example: Cone-based topology control

- Assumption: Distance and angle information between nodes is available
- Two-phase algorithm
- Phase 1
 - Every node starts with a small transmission power
 - Increase it until a node has sufficiently many neighbors
 - What is “sufficient”? – When there is at least one neighbor in each cone of angle α
 - $\alpha = 5/6\pi$ is necessary and sufficient condition for connectivity!
- Phase 2
 - Remove redundant edges: Drop a neighbor w of u if there is a node v of w and u such that sending from u to w directly is less efficient than sending from u via v to w
 - Essentially, a local Gabriel graph construction
Example: Cone-based topology control (2)

- Properties: simple, local construction
- Extensions for k-connectivity (Yao graph)

- Little exercise: What happens when $\alpha < \text{ or } > \frac{5}{6} \pi$?
Centralized power control algorithm

- Goal: Find topology control algorithm minimizing the maximum power used by any node
 - Ensuring simple or bi-connectivity
 - Assumptions: Locations of all nodes and path loss between all node pairs are known; each node uses an individually set power level to communicate with all its neighbors

- Idea: Use a centralized, greedy algorithm
 - Initially, all nodes have transmission power 0
 - Connect those two components with the shortest distance between them (raise transmission power accordingly)

- Second phase: Remove links (=reduce transmission power) not needed for connectivity

- Exercise: Relation to Kruskal’s MST algorithm?
Centralized power control algorithm

1) Connect A-C and B-D
2) Connect A-B
3) Connect C-D
4) Connect C-E and D-F
5) Remove edge A-B
Overview

- Motivation, basics
- Power control
- **Backbone construction**
- Clustering
- Adaptive node activity
Hierarchical networks – backbones

- **Idea**: Select some nodes from the network/graph to form a **backbone**
 - A connected, minimal, dominating set (MDS or MCDS)
 - Dominating nodes control their neighbors
 - Protocols like routing are confronted with a simple topology – from a simple node, route to the backbone, routing in backbone is simple (few nodes)

- **Problem**: MDS is an NP-hard problem
 - Hard to approximate, and even approximations need quite a few messages
Backbone by growing a tree

- Construct the backbone as a tree, grown iteratively

initialize all nodes’ color to white
pick an arbitrary node and color it grey

while (there are white nodes) {
 pick a grey node v that has white neighbors
 color the grey node v black
 foreach white neighbor u of v {
 color u grey
 add (v, u) to tree T
 }
}
Backbone by growing a tree – Example

1:

2:

3:

4:
Problem: Which gray node to pick?

- When blindly picking any gray node to turn black, resulting tree can be very bad

Solution: Look ahead! One step suffices
Performance of tree growing with look ahead ahead

- Dominating set obtained by growing a tree with the look ahead heuristic is at most a factor $2(1 + H(\Delta))$ larger than MDS
 - $H(\phi)$ harmonic function, $H(k) = \sum_{i=1}^{k} \frac{1}{i} \leq \ln k + 1$
 - Δ is maximum degree of the graph

- It is automatically connected

- Can be implemented in a distributed fashion as well
Start big, make lean

- Idea: start with some, possibly large, connected dominating set, reduce it by removing unnecessary nodes

- Initial construction for dominating set
 - All nodes are initially white
 - Mark any node black that has two neighbors that are not neighbors of each other (they might need to be dominated)
 - Black nodes form a connected dominating set (proof by contradiction); shortest path between ANY two nodes only contains black nodes

- Needed: Pruning heuristics
Pruning heuristics

• Heuristic 1: Unmark node v if
 • Node v and its neighborhood are included in the neighborhood of some node marked node u (then u will do the domination for v as well)
 • Node v has a smaller unique identifier than u (to break ties)

• Heuristic 2: Unmark node v if
 • Node v’s neighborhood is included in the neighborhood of two marked neighbors u and w
 • Node v has the smallest identifier of the tree nodes

• Nice and easy, but only linear approximation factor
One more distributed backbone heuristic: Span

- Construct backbone, but take into account need to carry traffic – preserve capacity
 - Means: If two paths could operate without interference in the original graph, they should be present in the reduced graph as well
 - Idea: If the stretch factor (induced by the backbone) becomes too large, more nodes are needed in the backbone

- Rule: Each node observes traffic around itself
 - If node detects two neighbors that need three hops to communicate with each other, node joins the backbone, shortening the path
 - Contention among potential new backbone nodes handled using random backoff
Overview

- Motivation, basics
- Power control
- Backbone construction
- *Clustering*
- Adaptive node activity
Clustering

- Partition nodes into groups of nodes – *clusters*
- Many options for details
 - Are there *clusterheads*? – One controller/representative node per cluster
 - May clusterheads be neighbors? If no: clusterheads form an *independent set C*:
 \[\forall c_1, c_2 \in C : (c_1, c_2) \notin E \]
 Typically: clusterheads form a *maximum independent set*
 - May clusters overlap? Do they have nodes in common?
Clustering

- Further options
 - How do clusters communicate? Some nodes need to act as *gateways* between clusters.
 - If clusters may not overlap, two nodes need to jointly act as a *distributed gateway*.
 - How many gateways exist between clusters? Are all active, or some standby?
 - What is the maximal diameter of a cluster? If more than 2, then clusterheads are not necessarily a maximum independent set.
 - Is there a hierarchy of clusters?
Maximum independent set

- Computing a maximum independent set is NP-complete
- Can be approximate within \((\Delta + 3)/5\) for small \(\Delta\), within \(O(\Delta \log \log \Delta / \log \Delta)\) else; \(\Delta\) bounded degree
- Show: A maximum independent set is also a dominating set
- Maximum independent set not necessarily intuitively desired solution
 - Example: Radial graph, with only \((v_0, v_i) \in E\)
A basic construction idea for independent sets

- Use some attribute of nodes to break local symmetries
 - Node identifiers, energy reserve, mobility, weighted combinations… - matters not for the idea as such (all types of variations have been looked at)
- Make each node a clusterhead that locally has the largest attribute value
- Once a node is dominated by a clusterhead, it abstains from local competition, giving other nodes a chance
Determining gateways to connect clusters

- Suppose: Clusterheads have been found
- How to connect the clusters, how to select gateways?

- It suffices for each clusterhead to connect to all other clusterheads that are at most three hops
 - Resulting backbone (!) is connected

- Formally: Steiner tree problem
 - Given: Graph $G=(V,E)$, a subset $C \subseteq V$
 - Required: Find another subset $T \subseteq V$ such that $S \cup T$ is connected and $S \cup T$ is a cheapest such set
 - Cost metric: number of nodes in T, link cost
 - Here: special case since C are an independent set
Rotating clusterheads

- Serving as a clusterhead can put additional burdens on a node
 - For MAC coordination, routing, …

- Let this duty rotate among various members
 - Periodically reelect – useful when energy reserves are used as discriminating attribute
 - LEACH – determine an optimal percentage P of nodes to become clusterheads in a network
 - Use $1/P$ rounds to form a period
 - In each round, nP nodes are elected as clusterheads
 - At beginning of round r, node that has not served as clusterhead in this period becomes clusterhead with probability $P/(1-p(r \mod 1/P))$
Multi-hop clusters

- Clusters with diameters larger than 2 can be useful, e.g., when used for routing protocol support
- Formally: Extend “domination” definition to also dominate nodes that are at most d hops away
- Goal: Find a smallest set D of dominating nodes with this extended definition of dominance
- Only somewhat complicated heuristics exist

- Different tilt: Fix the size (not the diameter) of clusters
 - Idea: Use growth budgets – amount of nodes that can still be adopted into a cluster, pass this number along with broadcast adoption messages, reduce budget as new nodes are found
Passive clustering

- Constructing a clustering structure brings overheads
 - Not clear whether they can be amortized via improved efficiency
- Question: Eat cake and have it?
 - Have a clustering structure without any overhead?
 - Maybe not the best structure, and maybe not immediately, but benefits at zero cost are no bad deal…

! Passive clustering

- Whenever a broadcast message travels the network, use it to construct clusters on the fly
- Node to start a broadcast: Initial node
- Nodes to forward this first packet: Clusterhead
- Nodes forwarding packets from clusterheads: ordinary/gateway nodes
- And so on… ! Clusters will emerge at low overhead
Overview

- Motivation, basics
- Power control
- Backbone construction
- Clustering
- *Adaptive node activity*
Adaptive node activity

- Remaining option: Turn some nodes off deliberately
- Only possible if other nodes remain on that can take over their duties
- Example duty: Packet forwarding
 - Approach: Geographic Adaptive Fidelity (GAF)
- Observation: Any two nodes within a square of length $r < R/5^{1/2}$ can replace each other with respect to forwarding
 - R radio range
- Keep only one such node active, let the other sleep
Conclusion

• Various approaches exist to trim the topology of a network to a desired shape
• Most of them bear some non-negligible overhead
 • At least: Some distributed coordination among neighbors, or they require additional information
 • Constructed structures can turn out to be somewhat brittle – overhead might be wasted or even counter-productive
• Benefits have to be carefully weighted against risks for the particular scenario at hand