CS4491/CS 7265 BIG DATA ANALYTICS

BIG DATA AND MAPREDUCE

* The contents are adapted from Dr. Chengkai Li at UT Arlington, Jeff Dean, Sanjay Ghemawat, Anand Rajaraman

Mignon Kang, Ph.D
Computer Science, Kennesaw State University
Map? Reduce?

Higher-order function in functional programming languages.

Example: Scheme (variant of LISP)

- (map square '(1 2 3))
 - (1 4 9)
- (reduce + (map square '(1 2 3)))
 - 14
Motivation: Large Scale Data Processing

- Many tasks:
 Process lots of data to produce other data
- Want to use hundreds or thousands of CPUs
 ... but this needs to be easy
- MapReduce provides:
 - Automatic parallelization and distribution
 - Fault-tolerance
 - I/O scheduling
 - Status and monitoring
Single-node architecture

Machine Learning, Statistics

“Classical” Data Mining
Commodity Clusters

- Web data sets can be very large
 - Tens to hundreds of terabytes
- Cannot mine on a single server (why?)
- Standard architecture emerging:
 - Cluster of commodity Linux nodes
 - Gigabit ethernet interconnect
- How to organize computations on this architecture?
 - Mask issues such as hardware failure
Cluster Architecture

Each rack contains 16-64 nodes

1 Gbps between any pair of nodes in a rack

2-10 Gbps backbone between racks

1 Gbps between any pair of nodes in a rack
Stable storage

- First order problem: if nodes can fail, how can we store data persistently?
- Answer: Distributed File System
 - Provides global file namespace
 - Google GFS; Hadoop HDFS; Kosmix KFS
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common
Google File System

- **Distribute File System**
 - **Master:** control tower that monitors GFS’s status and manages
 - **Chunk Server:** physical I/O operations
 - **Client:** request I/O operations
Google File System

- A client requests I/O operations
- Master replies the information of the chunk server which is nearest to the client
- Client communicates with the chunk server directly for I/O operations
Google File System

- Fault-tolerance
 - If a chunk server fails
 - Master uses other available chunk server
 - If master server fails
 - There is another device that monitors master server
 - Master will be replaced with others
Warm up: Word Count

- We have a large file of words, one word to a line
- Count the number of times each distinct word appears in the file
 - `sort datafile | uniq -c`
- Sample application: analyze web server logs to find popular URLs
Case 1: Entire file fits in memory
Case 2: File too large for mem, but all <word, count> pairs fit in mem
Case 3: File on disk, too many distinct words to fit in memory
To make it slightly harder, suppose we have a large corpus of documents.

Count the number of times each distinct word occurs in the corpus:

```
cat datafile | sed -r 's/[[[:space:]]]+/\n/g' | sed '/^$/d' | sort | uniq -c
```

The above captures the essence of MapReduce.

Great thing is it is naturally parallelizable.
Programming model

- Input & Output: each a set of key/value pairs

- Programmer specifies two functions:
 - map\(\text{\texttt{(in_key, in_value) \rightarrow list(out_key, intermediate_value)}}\)
 - Processes input key/value pair
 - Produces set of intermediate pairs
 - reduce\(\text{\texttt{(out_key, list(intermediate_value)) \rightarrow list(out_value)}}\)
 - Combines all intermediate values for a particular key
 - Produces a set of merged output values (usually just one)

- Inspired by similar primitives in LISP and other languages
MapReduce

- **Input**: a set of key/value pairs
- **User supplies two functions**:
 - $\text{map}(k_1, v_1) \rightarrow \text{list}(k_2, v_2)$
 - $\text{reduce}(k_2, \text{list}(v_2)) \rightarrow \text{list}(v_3)$

- (k_2, v_2) is an intermediate key/value pair
- **Output**: for each k_2, the output is a list of (k_2, v_3) pairs.
 - usually just one value or empty.
 - k_2 is omitted since it is pre-determined based on the input
Word Count using MapReduce

map(key, value):
// key: document name; value: text of document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; values: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(result)
Distributed Execution Overview

Input Data

- Split 0
 - read
 - Worker

- Split 1
 - Worker
 - local
 - write

- Split 2
 - Worker

User Program

Master

Worker

Output File 0

Worker

write

Output File 1

Worker

fork

assign

map

fork

assign

reduce

fork

write

remote

read, sort

split 0

split 1

split 2
Data flow

- Input, final output are stored on a distributed file system
 - Scheduler tries to schedule map tasks “close” to physical storage location of input data

- Intermediate results are stored on local FS of map and reduce workers

- Output is often input to another map reduce task
Coordination

- **Master data structures**
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
 - R: the number of reducers.
 - Master pushes this info to reducers

- **Master pings workers periodically to detect failures**
Failures

- **Map worker failure**
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker

- **Reduce worker failure**
 - Only in-progress tasks are reset to idle

- **Master failure**
 - MapReduce task is aborted and client is notified
Combiners

- Often a map task will produce many pairs of the form \((k,v_1), (k,v_2), \ldots\) for the same key \(k\)
 - E.g., popular words in Word Count

- Can save network time by pre-aggregating at mapper
 - \(\text{combine}(k_1, \text{list}(v_1)) \to v_2\)
 - Usually same as reduce function

- Works only if reduce function is commutative and associative
Partition Function

- Inputs to map tasks are created by contiguous splits of input file
- For reduce, we need to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function e.g., hash(key) mod R
- Sometimes useful to override
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file
Execution

\[
\begin{array}{cccccc}
M & M & M & M & M & M & M & M & \\
& Group by Key & \\
Grouped & k1:v,v,v,v & k2:v & k3:v,v & k4:v,v,v & k5:v & \\
& R & R & R & R & R & \\
Output &
\end{array}
\]
Parallel Execution
Model is Widely Applicable

- **MapReduce Programs In Google Source Tree**

 - distributed grep
 - term-vector / host
 - document clustering
 - distributed sort
 - web access log stats
 - machine learning
 - web link-graph reversal
 - inverted index construction
 - statistical machine translation

Example uses:
Exercise 1: Host size

- Suppose we have a large web corpus
- Let’s look at the metadata file
 - Lines of the form (URL, size, date, …)
- For each host, find the total number of bytes
 - i.e., the sum of the page sizes for all URLs from that host
Map (key= position, value = “URL, size, data, …”)
 foreach hostname URL
 emit(hostname, size)

Reduce(key = hostname, value = size)
 totalsize = 0
 for each size v in sizes:
 totalsize += v
 emit(hostname, totalsize)
Exercise 2: Graph reversal

- Given a directed graph as an adjacency list:
 src1: dest11, dest12, ...
 src2: dest21, dest22, ...

- Construct the graph in which all the links are reversed
Map (key= filename, value = file content)
 foreach line <src : destination list>
 foreach dest in destination list
 emit(dest, src)

Reduce(key = node, value = rev_src)
 String concat = node + “: ”
 foreach n in rev_src
 concat += n + “ ”
 emit (concat)
Exercise 4: Frequent Pairs

- Given a large set of market baskets, find all frequent pairs
 - Data: Basket1, Item11, Item12, ...

- A lot of transaction files

- Each line of a transaction file is a list of items

- Threshold = t
Map(key= marketbasket file, value=content)
 foreach line=item_1, ..., item_n in content
 for i=1; i<n; i++
 for j=i+1; j<=n; j++
 emit(<item_i, item_j>, 1)

Reduce(key= <item_i, item_j>, value = counts)
 total = 0
 foreach count in counts
 total += count
 if (total >= t) emit(total)
Exercise 5: Incoming Links

Given a set of HTML pages, compute the number of incoming hyperlinks for each URL. For example, suppose the URL http://crystal.uta.edu/cli/cse5334/index.html appears in 3 pages: 3 times in page A, 3 times in page B, and 4 times in page C. Then its number of incoming hyper-links is 10.
Hadoop

- An open-source implementation of Map Reduce in Java
 - Uses HDFS for stable storage
- Download from:
 - http://lucene.apache.org/hadoop/