The Fundamental Homomorphism Theorem

Philippe B. Laval

KSU

Current Semester
In the previous chapter, we saw that every quotient group of \(G \) is a homomorphic image of \(G \).

In other words, if \(H \triangleleft G \) then \(G/H \) is a homomorphic image of \(G \).

In this chapter, we will prove the converse result, that is every homomorphic image of \(G \) is a quotient group of \(G \).

In other words, we will see that every homomorphic image of \(G \) is isomorphic to a quotient group of \(G \).
Preliminary Results

We begin with a result we will need for what follows.

Theorem

Let G and H be two groups and $f : G \rightarrow H$ be a homomorphism. Let $K = \ker f$. Then

$$f(a) = f(b) \iff Ka = Kb$$

Remark: Under the conditions of the theorem, we also have $f(a) = f(b) \iff aK = bK$. Why?
Sketch of a proof. Normally, we have to prove both directions. But the steps are reversible, so we can do both directions at the same time.

- Recall $Ka = Kb \iff ab^{-1} \in K$. How does this help?
Sketch of a proof. Normally, we have to prove both directions. But the steps are reversible, so we can do both directions at the same time.

- Recall $Ka = Kb \iff ab^{-1} \in K$. How does this help?
- Prove that $f(a) = f(b) \iff ab^{-1} \in K$ using the fact that f is a homomorphism and the definition of K.
We now state and prove the main result of this chapter.

Theorem

Suppose that G is a group.

1. If $K \triangleleft G$, then the quotient group G/K is a homomorphic image of G. In other words, the function $f : G \rightarrow G/K$ defined by $f(x) = Kx$ is a homomorphism of G onto G/K and $\ker f = K$.

2. If H is a homomorphic image of G, then there exists a normal subgroup K of G such that H is isomorphic to the quotient group G/K. More specifically, if $f : G \rightarrow H$ is a homomorphism of G onto H, then H is isomorphic to G/K where $K = \ker f$.

Philippe B. Laval (KSU)
Part 1 was proven with quotient groups.

Part 2: Suppose that $f : G \rightarrow H$ is a homomorphism of G onto H and let $K = \ker f$. We will show that $\phi : G/K \rightarrow H$ defined by $\phi(Kx) = f(x)$ for every $x \in G$ is an isomorphism. For this, we have four things to prove.

1. ϕ is well defined:
2. ϕ is injective:
3. ϕ is surjective:
4. ϕ preserves the operation:
Main Result: Sketch of a Proof

1. ϕ is well defined: Suppose that $x, y \in G$ and $Kx = Ky$. We need to show that $\phi(Kx) = \phi(Ky)$. Use the lemma and the definition of ϕ.

2. ϕ is injective: Suppose that $x, y \in G$ and $\phi(Kx) = \phi(Ky)$. We need to show that $Kx = Ky$. Use the definition of ϕ, the fact f is a homomorphism, and the result regarding cosets being equal.

3. ϕ is surjective: Let $z \in H$, we need to show that z is the image of a coset of K that is there exists $x \in G$: $(Kx) = z$. Use the fact that f is onto.

4. ϕ preserves the operation: We need to show that for every $x, y \in G$, $(\phi(Kx) \phi(Ky)) = \phi(Kx \cdot Ky)$. Use coset multiplication, the definition of ϕ, and the fact that f is a homomorphism.
Main Result: Sketch of a Proof

1. \(\phi \) is well defined: Suppose that \(x, y \in G \) and \(Kx = Ky \). We need to show that \(\phi(Kx) = \phi(Ky) \).
 Use the lemma and the definition of \(\phi \).

2. \(\phi \) is injective: Suppose that \(x, y \in G \) and \(\phi(Kx) = \phi(Ky) \). We need to show that \(Kx = Ky \).
 Use the definition of \(\phi \), the fact \(f \) is a homomorphism, and the result regarding cosets being equal.

Philippe B. Laval (KSU)
The Fundamental Homomorphism Theorem
Current Semester 7 / 10
Main Result: Sketch of a Proof

1. ϕ is well defined: Suppose that $x, y \in G$ and $Kx = Ky$. We need to show that $\phi(Kx) = \phi(Ky)$.
 Use the lemma and the definition of ϕ.

2. ϕ is injective: Suppose that $x, y \in G$ and $\phi(Kx) = \phi(Ky)$. We need to show that $Kx = Ky$.
 Use the definition of ϕ, the fact f is a homomorphism, and the result regarding cosets being equal.

3. ϕ is surjective: Let $z \in H$, we need to show that z is the image of a coset of K that is there exists $x \in G : \phi(Kx) = z$.
 Use the fact that f is onto.
Main Result: Sketch of a Proof

1. \(\phi \) is well defined: Suppose that \(x, y \in G \) and \(Kx = Ky \). We need to show that \(\phi(Kx) = \phi(Ky) \).
 Use the lemma and the definition of \(\phi \).

2. \(\phi \) is injective: Suppose that \(x, y \in G \) and \(\phi(Kx) = \phi(Ky) \). We need to show that \(Kx = Ky \).
 Use the definition of \(\phi \), the fact \(f \) is a homomorphism, and the result regarding cosets being equal.

3. \(\phi \) is surjective: Let \(z \in H \), we need to show that \(z \) is the image of a coset of \(K \) that is there exists \(x \in G : \phi(Kx) = z \).
 Use the fact that \(f \) is onto.

4. \(\phi \) preserves the operation: We need to show that for every \(x, y \in G \),
 \(\phi((Kx)(Ky)) = \phi(Kx) \phi(Ky) \).
 Use coset multiplication, the definition of \(\phi \), and the fact that \(f \) is a homomorphism.
Consider the group of integers, \mathbb{Z}, with addition. As we know, \mathbb{Z} is cyclic hence all its subgroups are cyclic. In addition, \mathbb{Z} is Abelian, hence all its subgroups are normal subgroups.

Let us consider the subgroup

$$\langle 6 \rangle = \{ ..., -12, -6, 0, 6, 12, ... \}$$

The distinct cosets of this subgroup are

$$\langle 6 \rangle + 0 = \langle 6 \rangle = \{ ..., -12, -6, 0, 6, 12, ... \}$$
$$\langle 6 \rangle + 1 = \{ ..., -11, -5, 1, 7, 13, ... \}$$
$$\langle 6 \rangle + 2 = \{ ..., -10, -4, 2, 8, 14... \}$$
$$\langle 6 \rangle + 3 = \{ ..., -9, -3, 3, 9, 15, ... \}$$
$$\langle 6 \rangle + 4 = \{ ..., -8, -2, 4, 10, 16, ... \}$$
$$\langle 6 \rangle + 5 = \{ ..., -7, -1, 5, 11, 17, ... \}$$

and hence the elements of $\mathbb{Z}/\langle 6 \rangle$ are $\{ 0, 1, 2, 3, 4, 5 \}$ where $\bar{k} = \langle 6 \rangle + k$.
By part 1 of the Fundamental Homomorphism Theorem, the function
\(f : \mathbb{Z} \rightarrow \mathbb{Z}/\langle 6 \rangle \) defined by
\(f(x) = \langle 6 \rangle + x \) is a homomorphism with
\(\ker f = \langle 6 \rangle \).

To illustrate part 2 of the Fundamental Homomorphism Theorem, we
ote that \(\mathbb{Z}_6 \) with addition modulo 6 is also a homomorphic image of
\(\mathbb{Z} \). In particular, the function
\(f : \mathbb{Z} \rightarrow \mathbb{Z}_6 \) defined by
\(f(x) = x \mod 6 \) is a homomorphism of \(\mathbb{Z} \) onto \(\mathbb{Z}_6 \) and its kernel is
\(\ker f = \langle 6 \rangle \). By part 2 of the theorem, \(\mathbb{Z}_6 \cong \mathbb{Z}/\langle 6 \rangle \).

The same argument can be made for \(\mathbb{Z}_n \) and \(\mathbb{Z}/\langle n \rangle \) for any integer \(n \).
1. Do the following problems at the end of chapter 16 of your book: A2, C1, C2, C3, F1, F2, I1, I2, I3, I4.