3.3 Limit Points

3.3.1 Main Definitions

Intuitively speaking, a limit point of a set \(S \) in a space \(X \) is a point of \(X \) which can be approximated by points of \(S \) other than \(x \) as well as one pleases.

The notion of limit point is an extension of the notion of being "close" to a set in the sense that it tries to measure how crowded the set is. To be a limit point of a set, a point must be surrounded by an infinite number of points of the set.

We now give a precise mathematical definition. In what follows, \(\mathbb{R} \) is the reference space, that is all the sets are subsets of \(\mathbb{R} \).

Definition 263 (Limit point) Let \(S \subseteq \mathbb{R} \), and let \(x \in \mathbb{R} \).

1. \(x \) is a limit point or an accumulation point or a cluster point of \(S \) if \(\forall \delta > 0, (x - \delta, x + \delta) \cap S \setminus \{x\} \neq \emptyset \).

2. The set of limit points of a set \(S \) is denoted \(L(S) \).

Remark 264 Let us remark the following:

1. In the above definition, we can replace \((x - \delta, x + \delta) \) by a neighborhood of \(x \). Therefore, \(x \) is a limit point of \(S \) if any neighborhood of \(x \) contains points of \(S \) other than \(x \).

2. Being a limit point of a set \(S \) is a stronger condition than being close to a set \(S \). It requires any neighborhood of the limit point \(x \) to contain points of \(S \) other than \(x \).

3. The above two remarks should make it clear that \(L(S) \subseteq S \). We can also prove it rigorously. If \(x \in L(S) \) then \(\exists \delta > 0 : (x - \delta, x + \delta) \cap S \setminus \{x\} \neq \emptyset \).

Let \(y \in (x - \delta, x + \delta) \cap S \setminus \{x\} \). Then, \(y \in (x - \delta, x + \delta) \) and \(y \in S \setminus \{x\} \). So, \(y \in S \) thus \((x - \delta, x + \delta) \cap S \neq \emptyset \). Hence \(x \in S \).

4. However, \(S \) is not always a subset of \(L(S) \).

Let us first look at easy examples to understand what a limit point is and what the set of limit points of a given set might look like.

Example 265 Let \(S = (a, b) \) and \(x \in (a, b) \). Then \(x \) is a limit point of \((a, b) \). Let \(\delta > 0 \) and consider \((x - \delta, x + \delta) \). This interval will contain points of \((a, b) \) other than \(x \), infinitely many points in fact.

Example 266 \(a \) and \(b \) are limit points of \((a, b) \). Given \(\delta > 0 \), the interval \((a - \delta, a + \delta) \) contains infinitely many points of \((a, b) \setminus \{a\} \) thus showing \(a \) is a limit point of \((a, b) \). The same is true for \(b \).

Example 267 Let \(S = [a, b] \) and \(x \in [a, b] \). Then \(x \) is a limit point of \([a, b] \). This is true for the same reasons as above.
At this point you may think that there is no difference between a limit point and a point close to a set. Consider the next example.

Example 268 Let $S = (0, 1) \cup \{2\}$. 2 is close to S. For any $\delta > 0$, $\{2\} \subseteq (2 - \delta, 2 + \delta) \cap S$ so that $(2 - \delta, 2 + \delta) \cap S \neq \emptyset$. But 2 is not a limit point of S. $(2 - .1, 2 + .1) \cap S \setminus \{2\} = \emptyset$.

Remark 269 You can think of a limit point as a point close to a set but also surrounded by many (infinitely many) points of the set.

We look at more examples.

Example 270 $L((a, b)) = [a, b]$. From the first two examples of this section, we know that $L((a, b)) \subseteq [a, b]$. What is left to show is that if $x \notin [a, b]$ then x is not a limit point of (a, b). Let $x \in \mathbb{R}$ such that $x \notin (a, b)$. Assume $x > b$ (the case $a < a$ is similar and left for the reader to check). Let $\delta < |x - b|$. Then $(x - \delta, x + \delta) \cap (a, b) \setminus \{x\} = \emptyset$.

Example 271 $L(\mathbb{Z}) = \emptyset$. Let $x \in \mathbb{R}$. For x to be a limit point, we must have that for any $\delta > 0$ the interval $(x - \delta, x + \delta)$ would have to contain points of \mathbb{Z} other than x. Since for every real number x there exists an integer n such that $n - 1 \leq x < n$, if $\delta < \min(|x - n + 1|, |x - n|)$, the interval $(x - \delta, x + \delta)$ contains no integer therefore $(x - \delta, x + \delta) \cap \mathbb{Z} \setminus \{x\} = \emptyset$. So, no real number can be a limit point of \mathbb{Z}.

Example 272 $L(\mathbb{Q}) = \mathbb{R}$. For any real number and for any $\delta > 0$, the interval $(x - \delta, x + \delta)$ contains infinitely many points of \mathbb{Q} other than x. Thus, $(x - \delta, x + \delta) \cap \mathbb{Q} \setminus \{x\} \neq \emptyset$. So every real number is a limit point of \mathbb{Q}.

Example 273 If $S = (0, 1) \cup \{2\}$ then $S = [0, 1] \cup \{2\}$ but $L(S) = [0, 1]$. Using arguments similar to the arguments used in the previous examples, one can prove that every element in $[a, b]$ is a limit point of S and every element outside of $[a, b]$ is not. You will notice that $2 \in S$ but $2 \notin L(S)$. Also, 0 and 1 are in $L(S)$ but not in S. So, in the most general case, one cannot say anything regarding whether $S \subseteq L(S)$ or $L(S) \subseteq S$.

Example 274 If $S = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\}$ then $L(S) = \{0\}$ (see problems).

3.3.2 Properties

Theorem 275 Let $x \in \mathbb{R}$ and $S \subseteq \mathbb{R}$.

1. If x has a neighborhood which only contains finitely many members of S then x cannot be a limit point of S.

2. If x is a limit point of S then any neighborhood of x contains infinitely many members of S.
3.3. LIMIT POINTS

Proof. We prove each part separately.

Part 2: This part follow immediately from part 1.

Part 1: Let U be a neighborhood of x which contains only a finite number of points of S that is $U \cap S$ is finite. Then, $U \cap S \setminus \{x\}$ is also finite. Suppose $U \cap S \setminus \{x\} = \{y_1, y_2, ..., y_n\}$. We show there exists $\delta > 0$ such that $(x - \delta, x + \delta) \cap U$ does not contain any member of $S \setminus \{x\}$. Since both $(x - \delta, x + \delta)$ and U are neighborhood of x, so is their intersection. This will prove there is a neighborhood of x containing no element of $S \setminus \{x\}$ hence proving x is not a limit point of S. Let $\delta = \min \{|x - y_1|, |x - y_2|, ..., |x - y_n|\}$. Since x is not equal to y_i, $\delta > 0$. Then $(x - \delta, x + \delta) \cap U$ Contains no points of S other than x thus proving our claim.

Corollary 276 No finite set can have a limit point.

Proof. Follows immediately from the theorem. ■

The next theorem is very important. It helps understand the relationship between the set of limit points of a set and the closure of a set.

Theorem 277 Let $S \subseteq \mathbb{R}$

$$\overline{S} = S \cup L(S)$$

Proof. We show inclusion both ways.

1. $S \cup L(S) \subseteq \overline{S}$
 We already know that $S \subseteq \overline{S}$. We now show that $L(S) \subseteq \overline{S}$. This will imply the result. Suppose that $x \in L(S)$. Then $\forall \delta > 0$, $(x - \delta, x + \delta) \cap S \setminus \{x\} \neq \emptyset$. It follows that $(x - \delta, x + \delta) \cap S \neq \emptyset$, since $S \setminus \{x\} \subseteq S$. Therefore, x is in the closure of S.

2. $\overline{S} \subseteq S \cup L(S)$
 Let $x \in \overline{S}$. We need to prove that $x \in S \cup L(S)$. Either $x \in S$ or $x \notin S$. If $x \in S$ then $x \in S \cup L(S)$. If $x \notin S$ then x is close to S. Therefore, $\forall \delta > 0$, $(x - \delta, x + \delta) \cap S \neq \emptyset$. Since $x \notin S$, $S = S \setminus \{x\}$, therefore $(x - \delta, x + \delta) \cap S \setminus \{x\} \neq \emptyset$. It follows that $x \in L(S)$ and therefore $x \in S \cup L(S)$. So we see that in all cases, if we assume that $x \in \overline{S}$ then we must have $x \in S \cup L(S)$.

■

3.3.3 Important Facts to Remember

- Definitions properties and theorems in this section.

- $L(A) \cup L(B) = L(A \cup B)$ (see problems)
• \(\bar{S} = S \cup L(S) \)
• \(L(S) \subseteq \bar{S} \)
• \(L(S) \) is closed (see problems).
• If \(U \) is open then \(L(U) = \bar{U} \) (see problems).

3.3.4 Exercises

1. Prove that if \(S = \left\{ \frac{1}{n} : n \in \mathbb{Z}^+ \right\} \) then \(L(S) = \{0\} \)

2. In each situation below, give an example of a set which satisfies the given condition.
 (a) An infinite set with no limit point.
 (b) A bounded set with no limit point.
 (c) An unbounded set with no limit point.
 (d) An unbounded set with exactly one limit point.
 (e) An unbounded set with exactly two limit points.

3. Prove that if \(A \) and \(B \) are subsets of \(\mathbb{R} \) and \(A \subseteq B \) then \(L(A) \subseteq L(B) \).

4. Prove that if \(A \) and \(B \) are subsets of \(\mathbb{R} \) then \(L(A) \cup L(B) = L(A \cup B) \).

5. Is it true that if \(A \) and \(B \) are subsets of \(\mathbb{R} \) then \(L(A) \cap L(B) = L(A \cap B) \)?
 Give an answer in the following cases:
 (a) \(A \) and \(B \) are closed.
 (b) \(A \) and \(B \) are open.
 (c) \(A \) and \(B \) are intervals.
 (d) General case.

6. Given that \(S \subseteq \mathbb{R} \), \(S \neq \varnothing \) and \(S \) bounded above but \(\max S \) does not exist, prove that \(\sup S \) must be a limit point of \(S \). State and prove a similar result for \(\inf S \).

7. Let \(S \subseteq \mathbb{R} \). Prove that \(L(S) \) must be closed.

8. Prove that if \(U \) is open then \(L(U) = \bar{U} \).