2.9 The Extended Real Number System

2.9.1 Introduction

In mathematics, when we want to express the idea that a quantity can be made as large as one wishes, we simply say that this quantity is infinite (∞). For example, you may remember from Calculus

$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

In calculus, you were also told that ∞ was not a number and that you could not do arithmetic with infinity. Sometimes, it turns out that it is useful to treat ∞ and $-\infty$ as if they were numbers. They make the statement of some theorems and properties easier to write. They also decrease the number of cases to consider when proving results.

Definition 227 (Extended Real Number System) In treating ∞ and $-\infty$ as numbers, we are extending the real number system. What we have is

$$\mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$$

This is called the **extended real number system**. It is sometimes denoted $\mathbb{R}^\#$

In the extended real number system, we have the usual order $-\infty < \infty$, and for any real number x, $-\infty < x < \infty$.

2.9.2 Arithmetic in the Extended Real Number System

Many of the operations we do with real numbers can be extended to the extended real number system, but not all.

$$\infty + \infty = \infty \times \infty = (-\infty)(-\infty) = \infty$$

$$-\infty - \infty = (-\infty)\infty = \infty(-\infty) = -\infty$$

If x is any real number, then

$$\infty + x = x + \infty = \infty$$

$$-\infty + x = x - \infty = -\infty$$

$$\frac{x}{\infty} = \frac{x}{-\infty} = 0$$

$$\infty \times x = x \times \infty = \begin{cases} \infty & \text{if } x > 0 \\ -\infty & \text{if } x < 0 \end{cases}$$

$$(-\infty) \times x = x \times (-\infty) = \begin{cases} -\infty & \text{if } x > 0 \\ \infty & \text{if } x < 0 \end{cases}$$
However, the following are still indeterminate forms. Their behavior is unpredictable. Finding what they are equal to requires more advanced techniques such as l’Hôpital’s rule.

\[-\infty + \infty \text{ and } \infty - \infty \]

\[0 \times \infty \text{ and } \infty \times 0 \]

\[\infty \]

\[\infty \]

2.9.3 Suprema and Infima

If a set is unbounded above in \(\mathbb{R} \), we can think of \(\infty \) as being an upper bound of this set in the extended real number system. The same applies for lower bounds and \(-\infty \).

2.9.4 Exercises

1. #1 on page 89 (end of section 5.14) in Lewin’s book.
2. #2 on page 89 (end of section 5.14) in Lewin’s book.
3. #3 on page 89 (end of section 5.14) in Lewin’s book.