Limits of Difference Quotients – Answers to Exercises

January 22, 2001

Exercise Set 1.1

1. The slope of \(f(x) = x^2 \) at \(x_0 = -3 \) is \(-6\).

3. The slope of \(f(x) = \cos x \) at \(x_0 = 0 \) is 0.

5. The equation of the tangent line to the graph of \(f(x) = x^2 \) at \(x_0 = -3 \) is \(y = -6(x+3) + 9 \). The equation of the tangent line to the graph of \(f(x) = \cos x \) at \(x_0 = 0 \) is \(y = 1 \).

Exercise Set 3.1

1. Take \(a = 0.000000014 \) and \(b = 0.000000001 \). Then \(a/b = 14 \).

3. We want both \(a \) and \(b \) to be positive numbers that are both less than some given small positive number \(\epsilon \) and such that \(a/b = 5 \). To achieve this, let \(a \) be any positive number less than \(\epsilon \) and then let \(b = \frac{1}{5} a \). We then have

\[0 < b < a < \epsilon \]

and \(a/b = 5 \).

4. (a) \(\lim_{x \to 3} \frac{14x-42}{x-3} = 14 \).

(b) \(\lim_{x \to 0} \frac{2x^2+4x+2}{x^2+4x+2} = 3 \).

(c) \(\lim_{x \to -2} \frac{2x^2-9x-5}{4x^2-20x} = \frac{11}{30} \).
(e) \(\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 3. \)

(f) \(\lim_{x \to 4} \frac{x^2 - 2}{x - 4} = \frac{1}{4}. \)

6. The linear function that best approximates \(f(x) = \sqrt{x} \) for values of \(x \) near \(x_0 = 4 \) is \(L(x) = \frac{1}{4} (x - 4) + 2. \)

9. The tangent line to the graph of \(f(x) = \frac{1}{x} \) at the point \((1, 1)\) has equation \(y = - (x - 1) + 1 \) and the tangent line to the graph of \(g(x) = \frac{1}{x^2} \) at the point \((1, 1)\) has equation \(y = -2 (x - 1) + 1. \) This means that the graph of \(g \) is “twice as steep” as the graph of \(f \) at the point \((1, 1)\) (which is on both graphs). This fact is supported by the graphs of \(f \) and \(g \) shown below.