What Does The Derivative of f Tell Us About f?

Theorem Suppose that f is a function that is differentiable at all points in some interval I.

1. If $f'(x) > 0$ for all $x \in I$, then f is increasing on I.
2. If $f'(x) < 0$ for all $x \in I$, then f is decreasing on I.
Example The graph of the derivative, f', of a function f is shown below. What does this tell us about f? Suppose that it is also known that $f(0) = 0$. Make a rough sketch of the graph of f in this case.

Graph of f'
What Does The Second Derivative of f Tell Us About f?

Theorem Suppose that f is a function that is twice differentiable at all points in some interval I.

1. If $f''(x) > 0$ for all $x \in I$, then f is concave up on I.
2. If $f''(x) < 0$ for all $x \in I$, then f is concave down on I.
Example Sketch a possible graph of a function, \(f \), that satisfies all of the following conditions:

- \(f'(x) > 0 \) for all \(x \in (-\infty, 1) \) and \(f'(x) < 0 \) for all \(x \in (1, \infty) \).
- \(f''(x) > 0 \) for all \(x \in (-\infty, -2) \), and \(f''(x) < 0 \) for all \(x \in (-2, 2) \), and \(f''(x) > 0 \) for all \(x \in (2, \infty) \).
- \(\lim_{x \to -\infty} f(x) = -2 \) and \(\lim_{x \to \infty} f(x) = 0 \).
Antiderivatives

Definition Suppose that f is a function whose domain includes some interval I. A function, F, is called an antiderivative of f on I if $F'(x) = f(x)$ for all $x \in I$.

Example The function $F(x) = x^2$ is an antiderivative of the function $f(x) = 2x$ on the interval $(-\infty, \infty)$ because (as we saw in an earlier example) $F'(x) = f(x)$ for all $x \in (-\infty, \infty)$.

However, the function $F(x) = x^2 + 6$ is also an antiderivative of the function $f(x) = 2x$ on the interval $(-\infty, \infty)$. In fact, if C is any constant, then the function $F(x) = x^2 + C$ is an antiderivative of the function $f(x) = 2x$ on the interval $(-\infty, \infty)$. This is why we use the word “an” (rather than “the”) when referring to antiderivatives. When a
function f has an antiderivative on an interval I, then f always, in fact, has infinitely many antiderivatives on I.
Example Let f be the function with domain $[0, 5]$ whose graph is shown below and let F be an antiderivative of f.

1. On which intervals is F increasing and on which intervals is F decreasing?
2. On which intervals is F concave up and on which intervals is F concave down?
3. At which values of x does F have an inflection point?
4. Suppose that $F(0) = 1$ and make a rough sketch of the graph of F.
5. How many antiderivatives does f
have?