The Limit Laws

Suppose that

\[\lim_{x \to a} f(x) \]

and

\[\lim_{x \to a} g(x) \]

both exist (meaning that they are real numbers and not \(\infty \) or \(-\infty\)). Then the following limit laws are valid:

1. \(\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)
2. \(\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \)
3. If \(c \) is a constant, then \(\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x) \)
4. \(\lim_{x \to a} (f(x) \cdot g(x)) = (\lim_{x \to a} f(x)) \cdot (\lim_{x \to a} g(x)) \)
5. If \(\lim_{x \to a} g(x) \neq 0 \), then \(\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \).

Example

The graphs of two functions, \(f \) and \(g \), are shown in Figure 1 on page 111 of the Stewart textbook. Use these graphs to evaluate the limits:

\[\lim_{x \to -2} (f(x) + 5g(x)) = \underline{} \]
\[\lim_{x \to 1} (f(x)g(x)) = \underline{} \]
\[\lim_{x \to -2} \frac{f(x)}{g(x)} = \underline{} \]

Some Additional Limit Laws

6. If \(n \) is a positive integer, then \(\lim_{x \to a} ((f(x))^n) = (\lim_{x \to a} f(x))^n \)
7. If \(c \) is a constant, then \(\lim_{x \to a} c = c \)
8. \(\lim_{x \to a} x = a \)
9. If \(n \) is a positive integer, then \(\lim_{x \to a} (x^n) = a^n \)
10. If \(n \) is a positive integer, then \(\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} \) (If \(n \) is even, then this is valid only if \(a > 0 \).)
11. If \(n \) is a positive integer, then \(\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \) (If \(n \) is even, then this is valid only if \(\lim_{x \to a} f(x) > 0 \).)

The “Direct Substitution” Property for Polynomials and Rational Functions
If \(f \) is a polynomial or a rational function (meaning a ratio of two polynomials) and \(a \) is in the domain of \(f \), then

\[
\lim_{x \to a} f(x) = f(a).
\]

There are in fact many other functions that have this “direct substitution” property. These include most of the functions studied in Precalculus, such as exponential and trigonometric functions. This will be discussed further in Section 2.4.

Example
Find the value of

\[
\lim_{x \to 1} \frac{x^2 - 1}{x - 1}.
\]

Hint: The key fact to note here is that

\[
\frac{x^2 - 1}{x - 1} = x + 1 \quad \text{for all } x \neq 1.
\]

\[\begin{align*}
\text{graph of } y &= x + 1 \\
\text{graph of } y &= \frac{x^2-1}{x-1}
\end{align*}\]

Example
Let \(g \) be the function defined by

\[
g(x) = \begin{cases}
 x + 1 & \text{if } x \neq 1 \\
 \pi & \text{if } x = 1.
\end{cases}
\]

Find \(\lim_{x \to 1} g(x) \).
Example Evaluate
\[
\lim_{h \to 0} \frac{(3 + h)^2 - 9}{h}.
\]

Example Evaluate
\[
\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}.
\]

Recall
\[
\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L.
\]

Example Show that \(\lim_{x \to 0} |x| = 0 \) by computing the left and right–hand limits of this function at 0.

Hint:
\[
|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
\end{cases}
\]
Example Explain why

\[\lim_{x \to 0} \frac{|x|}{x} \] does not exist

by computing the left and right-hand limits of this function at 0.

Hint:

\[\frac{|x|}{x} = \begin{cases}
1 & \text{if } x > 0 \\
-1 & \text{if } x < 0
\end{cases} \]

(and this function is not defined at \(x = 0 \)).

Example The greatest integer function is defined by

\[\lfloor x \rfloor = \text{the largest integer that is less than or equal to } x. \]
(For example, $|2| = 2$, $|5.7| = 5$, and $|-3.4| = -4$.)

Explain why \(\lim_{x \to 3} \lfloor x \rfloor \) does not exist.

Hint: Compute the left and right-hand limits of this function at 3.

Graph of \(y = \lfloor x \rfloor \)

The Comparison and Squeeze Theorems for Limits

Theorem (The Comparison Theorem) Suppose that \(f(x) \leq g(x) \) for all \(x \) sufficiently near \(a \) (but not necessarily at \(x = a \)) and suppose that \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) both exist. Then

\[
\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x).
\]

Theorem (The Squeeze Theorem) Suppose that \(f(x) \leq g(x) \leq h(x) \) for all \(x \) sufficiently near \(a \) (but not necessarily at \(x = a \)) and suppose that \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} h(x) \) both exist and are equal. (In other words, suppose that \(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \) where \(L \) is a real number). Then

\[
\lim_{x \to a} g(x) = L.
\]

Proof The basic idea of the Squeeze Theorem is illustrated in the picture below. A formal
proof requires the “advanced calculus” definition of limit (just as do the proof of the limit laws that we stated earlier without proof).

Example Use the Squeeze Theorem to show that

\[
\lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0.
\]

Hint: Look at the three graphs of

\[
\begin{align*}
y &= -x^2 \\
y &= x^2 \sin\left(\frac{1}{x}\right) \\
y &= x^2
\end{align*}
\]

shown below.