Derivatives of Logarithmic Functions

Recall that if a is a positive number (a constant) with $a \neq 1$, then
\[y = \log_a(x) \]
means that \[a^y = x. \]

The function \(y = \log_a(x) \), which is defined for all \(x > 0 \), is called the base \(a \) logarithm function.

To find the derivative of the base e logarithm function, \(y = \log_e(x) = \ln(x) \), we write the formula in the implicit form \(e^y = x \) and then take the derivative of both sides of this formula (with respect to x) in order to find dy/dx. Thus, we use implicit differentiation. The reason for first writing the formula as $e^y = x$ is because we already know how to differentiate the base e exponential function. In fact, recall (from Section 3.1) that the derivative of the function
\[u = e^y \]
is
\[\frac{du}{dy} = e^y. \]

Writing
\[e^y = x, \]
we differentiate both sides with respect to x to obtain
\[\frac{d}{dx}(e^y) = \frac{d}{dx}(x) \]
or
\[\frac{d}{dx}(u) = \frac{d}{dx}(x) \]
where \(u = e^y \).

By the Chain Rule (recall that we are treating y as a function of x), we obtain
\[\frac{du}{dy} \cdot \frac{dy}{dx} = 1 \]
or
\[e^y \cdot \frac{dy}{dx} = 1 \]
This gives us
\[\frac{dy}{dx} = \frac{1}{e^y} \]
or (in terms of x only),
\[\frac{dy}{dx} = \frac{1}{x}. \]

In conclusion, the derivative function of the base e logarithm function, \(y = \ln(x) \), is simply
\[\frac{dy}{dx} = \frac{1}{x}. \]

In other words,
\[\frac{d}{dx} (\ln(x)) = \frac{1}{x}. \]

If we are using a base other than base \(e\), say base \(a\), then we recall the “change of base formula” which tells us that
\[\log_a(x) = \frac{\ln(x)}{\ln(a)}. \]

Since \(\ln(a)\) is a constant, we can use the Constant Multiple Rule to compute the derivative of \(y = \log_a(x)\). In particular,
\[
\frac{d}{dx} (\log_a(x)) = \frac{d}{dx} \left(\frac{\ln(x)}{\ln(a)} \right) \\
= \frac{1}{\ln(a)} \cdot \frac{d}{dx} (\ln(x)) \\
= \frac{1}{\ln(a)} \cdot \frac{1}{x}.
\]

In summary
\[\frac{d}{dx} (\log_a(x)) = \frac{1}{\ln(a) \cdot x}. \]

Finally, let us return to the problem of finding the derivative of the base \(a\) exponential function, \(y = a^x\). Writing this as \(\log_a(y) = x\) and using implicit differentiation, we see that
\[
\frac{d}{dx} (\log_a(y)) = \frac{d}{dx} (x)
\]

which implies that
\[
\frac{1}{\ln(a) \cdot y} \cdot \frac{dy}{dx} = 1
\]

which implies that
\[\frac{dy}{dx} = \ln(a) \cdot y \]

or
\[\frac{dy}{dx} = \ln(a) \cdot a^x. \]

In other words,
\[\frac{d}{dx} (a^x) = \ln(a) \cdot a^x. \]
To summarize all of this: If we have any base a with $a > 0$ and $a \neq 1$, then

\[\frac{d}{dx}(a^x) = \ln(a) \cdot a^x \]

\[\frac{d}{dx}(\log_a(x)) = \frac{1}{\ln(a) \cdot x} \]

In the case of base e, the formulas for the derivatives are especially nice:

\[\frac{d}{dx}(e^x) = e^x \]

\[\frac{d}{dx}(\ln(x)) = \frac{1}{x} \]

Example State the formulas for the derivatives of the base 2 exponential function, the base 3 exponential function, the base 2 logarithm function, and the base 3 logarithm function.
Logarithmic Differentiation

To find the derivatives of functions of the form

$$ y = (f(x))^g(x), $$

it is often easiest to first take the logarithm of both sides of the formula and to then compute the derivative using implicit differentiation. This process is called logarithmic differentiation.

Example Find the derivative, dy/dx, of the function

$$ y = x^{\cos(x)} $$

whose (partial) graph is shown below.

![Graph of $y = x^{\cos(x)}$](image)

Solution First we take the natural logarithm of both sides of the formula

$$ y = x^{\cos(x)} $$

to obtain

$$ \ln(y) = \ln(x^{\cos(x)}). $$

Using a property of logarithms, we obtain

$$ \ln(y) = \cos(x) \cdot \ln(x). $$

We now take the derivative with respect to x:

$$ \frac{d}{dx}(\ln(y)) = \frac{d}{dx}(\cos(x) \cdot \ln(x)) $$

and use implicit differentiation to obtain

$$ \frac{1}{y} \cdot \frac{dy}{dx} = \cos(x) \cdot \frac{1}{x} + (-\sin(x)) \cdot \ln(x) $$

or
Writing the formula in terms of x only, we see that
\[
\frac{dy}{dx} = x \cdot \left(\frac{\cos(x)}{x} - \sin(x) \cdot \ln(x) \right).
\]

Here is the graph of this derivative: