1. The absolute minimum value of a function is the least value that the function has on its entire domain. A local minimum value of a function is the least value that the function has in some (possibly small) open interval that is contained in its domain.

3.
 - This function has an absolute maximum that occurs at $x = b$.
 - This function has an absolute minimum that occurs at $x = d$.
 - This function has local maxima occurring at $x = b$, and $x = e$.
 - This function has local minima occurring at $x = d$, and $x = s$.

5.
 - f has an absolute maximum value of 4 that occurs at $x = 4$.
 - f has an absolute minimum value of 0 that occurs at $x = 7$.
 - f has a local maximum value of 4 that occurs at $x = 4$.
 - f has a local maximum value of 3 that occurs at $x = 6$.
 - f has a local minimum value of 1 that occurs at $x = 2$.
 - f has a local minimum value of 2 that occurs at $x = 5$.

7.

9.
Here is the graph of the function $f(x) = 8 - 3x$ with domain $[1, \infty)$:
This function has an absolute maximum value of 5 that occurs at \(x = 1 \). It has no absolute minimum. It also has no local maxima or minima.

23. To find the critical numbers of the function \(f(x) = 5x^2 + 4x \), we compute

\[
 f'(x) = 10x + 4
\]

and set \(f'(x) = 0 \) (and solve for \(x \)).

\[
 10x + 4 = 0
\]

\[
 \Rightarrow x = -\frac{2}{5}.
\]

The only critical number of \(f \) is \(-2/5\).

31. For \(f(\theta) = \sin^2(2\theta) \), we have

\[
 f'(\theta) = 4 \sin(2\theta) \cos(2\theta) = 2 \sin(4\theta).
\]

The critical numbers of \(f \) are those numbers, \(\theta \), for which \(\sin(4\theta) = 0 \).

The solutions of \(\sin(4\theta) = 0 \) are

\[
 4\theta = n\pi \quad \text{or} \quad \theta = \frac{n\pi}{4}.
\]

Thus every integer multiple of \(\pi/4 \) is a critical number of \(f \). The graph of \(f \) is shown below.

39. For the function \(f(x) = x^2 + 2x^{-1} \) with domain \(\left[\frac{1}{2}, 2 \right] \), we have
\[f'(x) = 2x - 2x^{-2} \]
\[= 2x^{-2} (x^3 - 1) \]
\[= \frac{2(x^3 - 1)}{x^2}. \]

The points where \(f'(x) = 0 \) are the points where \(x^3 - 1 = 0 \). The only point at which this is true is \(x = 1 \). Thus \(x = 1 \) is a critical number of \(f \). It is also true that \(f'(0) \) is not defined. However, \(x = 0 \) is not a critical number of \(f \) because 0 is not in the domain of \(f \).

Evaluating \(f \) at its critical number and at each of the endpoints of the interval \([\frac{1}{2}, 2]\), we obtain

- \(f(1) = 1^2 + 2/1 = 3 \)
- \(f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 + \frac{2}{\sqrt{2}} = \frac{1}{4} + 4 = 4.25 \)
- \(f(2) = 2^2 + 2/2 = 5 \).

We conclude that \(f \) has an absolute maximum value of 5 that occurs at \(x = 2 \), and an absolute minimum value of 3 that occurs at \(x = 1 \). See the graph of \(f \) below:

Graph of \(f(x) = x^2 + 2/x \)

53. Here is the graph of the function

\[I(t) = 0.00009045t^5 + 0.001438t^4 - 0.06561t^3 + 0.4598t^2 - 0.6270t + 99.33 \]

on the interval \([0, 10]\).
By looking at this graph, it looks like food was most expensive in about 1989 and cheapest in 1994.

We could try to find the exact value of \(t \) at which the local maximum occurs by computing \(I'(t) \) (which is easy) and then setting \(I'(t) = 0 \) and solving for \(t \). However, \(I' \) is a polynomial function of degree 4 and it is not easy to solve the equation \(I'(t) = 0 \). (There is an answer given in the back of the book. I assume that it was obtained numerically by using computer software that estimates numerical solutions. This can also be done on your calculator, by the way.)