Homework Assignment 16

S. F. Ellermeyer

May 6, 1998

1. Find the magnitude and the direction angles of the vector $\vec{v} = (1, -6, 2)$.

2. Find the vector, \vec{v}', which has magnitude 4 and direction angles $\alpha = \pi/2$, $\beta = \pi/2$, and $\gamma = 0$.

3. Find three different representatives of the vector $\vec{v} = (4, -2, 0)$. (Recall that a representative of \vec{v} is a directed line segment with same magnitude and direction as \vec{v}. See Section 1.1 of my notes.) What is the standard representative of \vec{v}'?

4. Let $\vec{v} = (9, -3, -6)$. Find the representative of \vec{v} which has initial point at $P_0 (0, -12, 4)$. Find the representative of \vec{v} which has terminal point at $P_1 (4, 0, -10)$. Find the standard representative of \vec{v}.

5. Let $\vec{u} = (2, 6, 0)$, $\vec{v} = (1, 1, 4)$, and $t = -3$. Compute $\vec{u} + \vec{v}$ and $t \vec{v}$.

6. Let $\vec{u} = (5, 3/2, 4/5)$ and $\vec{v} = (6, -6, 1/5)$. Compute $2 \vec{u} - 5 \vec{v}$.

7. Let $\vec{v} = (9, 2, -1/2)$. Find a vector whose magnitude is four times the magnitude of \vec{v} and which points in the opposite direction of \vec{v}. Also, find a vector whose magnitude is one tenth the magnitude of \vec{v} and which points in the same direction as \vec{v}.

8. Is $\vec{u} = (1/4, 1/2, -1/4)$ a unit vector?

9. Find a unit vector which points in the direction of $\vec{v} = (9, 2, -1/2)$.

10. Given that \vec{u} and \vec{v} are vectors with $|\vec{u}| = 2$, $\vec{u} \cdot \vec{v} = 3$, and the angle between \vec{u} and \vec{v} is $\theta = \pi/4$, find $|\vec{v}|$.

1
11. Use the dot product to show that the vectors $\mathbf{u}' = 5 \mathbf{i} - 2 \mathbf{j} + \mathbf{k}$ and $\mathbf{v}' = 2 \mathbf{i} - 3 \mathbf{j} - 16 \mathbf{k}$ are perpendicular.

12. Let $\mathbf{u}' = 4 \mathbf{i} + \frac{1}{2} \mathbf{j}$ and $\mathbf{v}' = 2 \mathbf{i} - \frac{1}{2} \mathbf{k}$. Find the sine of the angle, θ, between \mathbf{u}' and \mathbf{v}'. (Hint: You should easily be able to obtain $\cos \theta$ by using the dot product.) Also find $|\mathbf{u}'|$, $|\mathbf{v}'|$, and $|\mathbf{u}' \times \mathbf{v}'|$. Then, verify that $|\mathbf{u}' \times \mathbf{v}'| = |\mathbf{u}'||\mathbf{v}'| \sin \theta$. Do all of this without using a calculator or computer.

13. Use the cross product to verify that the vectors $\mathbf{u}' = 7 \mathbf{i} - 3 \mathbf{j} - \frac{4}{5} \mathbf{k}$ and $\mathbf{v}' = -21 \mathbf{i} + 9 \mathbf{j} + 4 \mathbf{k}$ are parallel. Do you see an easier way to see that \mathbf{u}' and \mathbf{v}' are parallel?

14. Find parametric equations for the line, L_1, which contains the points $P(0, -6, 4)$ and $Q(1, 1, -6)$. Once you have done this, verify that the point $P_1(-3, -27, 34)$ is on L_1 but the point $P_2(-1, -10, 14)$ is not on L_1.

15. Find parametric equations for the line, L_2, which is parallel to the line, L_1, of the previous problem, and which contains the point $P_2(-1, -10, 14)$.

16. Find an equation for the plane, Π_1, which contains the points $P(0, 0, -7)$, $Q(1, 2, -4)$, and $R(-1, 0, 1)$. After you have done this, verify that the point $P_1(2, 1, -35/2)$ is on Π_1 but that the point $P_2(5, -3/2, 3/2)$ is not on Π_1.

17. Find an equation for a plane, Π_2, which is parallel to the plane, Π_1, of the previous problem and which contains the point $P_2(5, -3/2, 3/2)$.

18. Let L be the line with parametric equations

$$
\begin{align*}
 x &= 6 - t \\
 y &= 4 - 2t \\
 z &= 3
\end{align*}
$$

and let P be the point $P(0, 0, 4)$. Find the distance from P to L.

19. Find the distance between the point $P(0, 0, 4)$ and the plane $\Pi : 3x + 2z = 0$.

2
20. Let \(L_1 \) be the line with parametric equations
\[
\begin{align*}
x &= 6 - t \\
y &= 4 - 2t \\
z &= 2 + t
\end{align*}
\]
and let \(L_2 \) be the line with parametric equations
\[
\begin{align*}
x &= 5 - 5t \\
y &= 2 - 10t \\
z &= 3 + 5t
\end{align*}
\]
Show that \(L_1 \) and \(L_2 \) are the same line.

21. Let \(L_1 \) be the line with parametric equations
\[
\begin{align*}
x &= 6 - t \\
y &= 4 - 2t \\
z &= 2 + t
\end{align*}
\]
and let \(L_2 \) be the line with parametric equations
\[
\begin{align*}
x &= 4 + 3t \\
y &= 4 + 6t \\
z &= 4 - 3t
\end{align*}
\]
Show that \(L_1 \) and \(L_2 \) are parallel (but not the same line) and find the distance between \(L_1 \) and \(L_2 \).

22. Let \(L_1 \) be the line with parametric equations
\[
\begin{align*}
x &= 6 - t \\
y &= 4 - 2t \\
z &= 2 + t
\end{align*}
\]
and let \(L_2 \) be the line with parametric equations
\[
\begin{align*}
x &= 1 + 2t \\
y &= 4 - 6t \\
z &= 4 + t
\end{align*}
\]
Show that \(L_1 \) and \(L_2 \) intersect at a single point and find this point.
23. Let L_1 be the line with parametric equations

\[\begin{align*}
 x &= 6 - t \\
 y &= 4 - 2t \\
 z &= 2 + t
\end{align*} \]

and let L_2 be the line with parametric equations

\[\begin{align*}
 x &= 4 + 2t \\
 y &= -6t \\
 z &= 4
\end{align*} \]

Show that L_1 and L_2 are skew and find the distance between L_1 and L_2.

24. Find the area of the triangle with vertices at the points $P(0, -4, 0)$, $Q(1, 2, -10)$, and $R(0, 2, 7)$.