Answers and Solutions to Homework Problems from Section 10.1 of Grossman
S. F. Ellermeyer
April 9, 1998

1.) The first five terms of the sequence \(1/3^n\) are
\[
\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}
\]

3.) The first five terms of the sequence \(1 - 1/4^n\) are
\[
\frac{3}{4}, \frac{15}{16}, \frac{63}{64}, \frac{255}{256}, \frac{1023}{1024}
\]

7.) \(n/(n + 1)\)

10.) \(n/(2n + 1)\)

11.)
\[
\frac{17}{\sqrt{n}} \to 0.
\]

14.) \(\sin(n\pi) = 0\) for all \(n = 1, 2, 3, \ldots\), so, clearly, \(\sin(n\pi) \to 0\).

16.)
\[
\frac{n^3}{n^3 + 1} = \frac{1}{1 + \frac{1}{n^3}}
\]
for all sufficiently large \(n\), so
\[
\frac{n^3}{n^3 + 1} \to 1.
\]

Thus, if \(n\) is large and even,
\[
\frac{(-1)^n n^3}{n^3 + 1}
\]

is close to 1, whereas if \(n\) is large and odd,
\[
\frac{(-1)^n n^3}{n^3 + 1}
\]

is close to \(-1\). We conclude that
\[
\frac{(-1)^n n^3}{n^3 + 1}
\]
diverges (by oscillation).

17.)
\[
\lim_{n \to \infty} \frac{n^5 + 3n^2 + 1}{n^6 + 4n} = \lim_{n \to \infty} \frac{1 + \frac{3}{n^3} + \frac{1}{n^6}}{1 + \frac{4}{n^5}} = 0.
\]

22.) For \(n\) sufficiently large,
\[
\sqrt{n + 3} - \sqrt{n} = \left(\sqrt{n + 3} - \sqrt{n}\right) \cdot \frac{\sqrt{n + 3} + \sqrt{n}}{\sqrt{n + 3} + \sqrt{n}}
\]
\[
= \frac{3}{\sqrt{n + 3} + \sqrt{n}}
\]
so
\[\lim_{n \to \infty} \left(\sqrt{n + 3} - \sqrt{n} \right) = \lim_{n \to \infty} \frac{3}{\sqrt{n + 3} + \sqrt{n}} = 0. \]

23.) First note that
\[\frac{2^n}{n!} = \frac{2^n}{n!} \cdot \frac{2!}{2!} \]
Next, note that if \(n = 2 + k \) where \(k \) is a positive integer, then
\[\frac{2!}{n!} = \frac{1 \cdot 2}{1 \cdot 2 \cdot (2 + 1) \cdot (2 + 2) \cdot \cdots \cdot (2 + k)} \]
\[\leq \frac{1}{(2 + 1) \cdot (2 + 2) \cdot \cdots \cdot (2 + 1)} \]
\[= \frac{1}{3^n} \]
\[= \frac{3^2}{3^n} \]
\[= \frac{3^2}{3^n} \]
Hence, for all \(n > 2 \), we have
\[0 \leq \frac{2^n}{n!} \leq \frac{2^n}{2!} \cdot \frac{3^2}{3^n} \]
\[= \frac{3^2}{2!} \left(\frac{2}{3} \right)^n. \]
Because \(2/3 < 1 \), we have
\[\frac{3^2}{2!} \cdot \left(\frac{2}{3} \right)^n \to 0. \]
By the Squeezing Principle, we thus have
\[\frac{2^n}{n!} \to 0. \]

24.) We claim that if \(\beta \) is any fixed real number, then
\[\frac{\beta^n}{n!} \to 0. \]
If \(\beta = 0 \), the result is obvious.
If \(\beta \) is a positive integer, you can carry out an argument like the one in the preceding problem, to see that the result is true. (You should do this for practice.)
If \(\beta > 0 \) but not an integer, then we can let \(\alpha \) be any fixed integer bigger than \(\beta \) and since we know, from the previous statement, that
\[\frac{\alpha^n}{n!} \to 0 \]
and since

\[0 \leq \frac{\beta^n}{n!} \leq \frac{\alpha^n}{n!} \]

for all \(n \geq 1 \), we have that \(\frac{\beta^n}{n!} \rightarrow 0 \) by the Squeezing Principle.

Finally, if \(\beta < 0 \), then we note that

\[-\frac{|\beta|^n}{n!} \leq \frac{\beta^n}{n!} \leq \frac{|\beta|^n}{n!} \]

and since each of the outer sequences both converge to zero, the Squeezing Principle tells us that \(\frac{\beta^n}{n!} \rightarrow 0 \).