Sequences

S. F. Ellermeyer

April 8, 1998

1 What is a Sequence?

Let \(Z^+ \) denote the set of positive integers. That is,

\[Z^+ = \{1, 2, 3, \ldots \} . \]

A sequence is a function whose domain is \(Z^+ \).

Example 1 The function defined on \(Z^+ \) be \(f(n) = 1/n^2 \) is a sequence. For this sequence, we have

\[
\begin{align*}
 f(1) & = \frac{1}{1^2} = 1 \\
 f(2) & = \frac{1}{2^2} = \frac{1}{4} \\
 f(3) & = \frac{1}{3^2} = \frac{1}{9} \\
 f(4) & = \frac{1}{4^2} = \frac{1}{16} \\
 \vdots \\
 \text{etc.}
\end{align*}
\]

Instead of using the functional notation, \(f(n) \), it is usually more convenient to use a notation like \(a_n \). For example, for the sequence in the above example, we would write \(a_n = 1/n^2 \).

Although a sequence is technically a function, we usually think of a sequence as an infinite progression of numbers which we call the terms of the
sequence. For example, when we see the sequence \(a_n = \frac{1}{n^2} \), we think of the progression of numbers
\[
1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots
\]
Also, we sometimes find it more convenient to “start” a sequence somewhere other than \(n = 1 \). For example, if \(a_n = \frac{1}{n^2} \) and we write
\[
\{a_n\}_{n=3}^{\infty},
\]
we are referring to the sequence
\[
\frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots
\]
Of course, if we want to insist that all sequences start at \(n = 1 \), we could write \(a_n = \frac{1}{(n + 2)^2} \) to obtain the same sequence.

Let us adopt the following convention: If we just write \(a_n \) or \(\{a_n\} \), then we will assume that the sequence is to start at \(n = 1 \), whereas if we write \(\{a_n\}_{n=k}^{\infty} \), we will assume that the sequence is to start at \(n = k \).

Example 2 The sequence defined by \(a_n = (-1)^n (n + 2) \) is the sequence with terms
\[-3, 4, -5, \ldots\]
whereas the sequence defined by
\[
\{(-1)^n (n + 2)\}_{n=3}^{\infty}
\]
is the sequence with terms
\[8, -9, 10, \ldots\]

2 Limits of Sequences

If \(a_n \) is a sequence and if there is a real number \(L \) such that the terms of the sequence are all close to \(L \) for \(n \) sufficiently large, we say that the sequence \(a_n \) converges to the limit \(L \). If no such number \(L \) exists, then we say that the sequence \(a_n \) diverges. Just like with functions which we have previously studied, a divergent sequence may diverge to \(\infty \) or to \(-\infty \) or it may just diverge by oscillation. If the sequence \(a_n \) converges to the limit \(L \), we write
\[
\lim_{n \to \infty} a_n = L
\]

2
or we can just simply write
\[a_n \to L \]
since, for sequences, it is always assumed that we are taking the limit as \(n \to \infty \).

Example 3 For the sequence \(a_n = 1/n^2 \), the terms are all close to 0 when \(n \) is large, so we have
\[
\lim_{n \to \infty} a_n = 0.
\]
(We say that this sequence converges to 0.)

Example 4 For the sequence \(a_n = n \), the terms just keep getting bigger and bigger (beyond all bounds) so we have
\[a_n \to \infty. \]
(We say that this sequence diverges to \(\infty \).)

Example 5 For the sequence \(a_n = \cos(n\pi) \), the terms of the sequence are
\[-1, 1, -1, 1, -1, \ldots \]
Since there is no number which all of the terms of the sequence are close to for \(n \) sufficiently large, we say that \(a_n \) diverges. This sequence diverges by oscillation.

2.1 Geometric Progressions

A geometric progression is a sequence of the form \(a_n = r^n \) where \(r \) is some fixed real number. An example of a geometric progression is \(a_n = (2/3)^n \). The terms of this particular geometric progression are
\[\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots \]
If you write out several more terms of this progression, you should notice that the terms are decreasing and getting closer and closer to zero. In fact, each term is \(2/3 \) of the previous term. Hence we have
\[\left(\frac{2}{3} \right)^n \to 0. \]

Just using some sample computations, you should be able to convince yourself of the following facts:
1. If $|r| < 1$, then $|r|^n \to 0$.

2. If $|r| > 1$, then $|r|^n \to \infty$

3. If $|r| = 1$, then $|r|^n \to 1$ (This is rather obvious because, in fact, $|r|^n = 1$ for all n)

Example 6 For $r = -4/3$, the sequence

$$\left(-\frac{4}{3} \right)^n$$

diverges by oscillation but note that

$$\left| -\frac{4}{3} \right|^n \to \infty$$

2.2 Using L’Hôpital’s Rule to Evaluate Limits of Sequences

Suppose that a_n is a sequence such that there is a function f which is defined for all sufficiently large x and which agrees with a_n when n is an integer, that is $f(n) = a_n$. If f satisfies the hypotheses of L’Hôpital’s Rule, we can use L’Hôpital’s Rule to evaluate the limit of the sequence.

Example 7 Let us evaluate

$$\lim_{n \to \infty} \frac{n}{e^n}.$$

We do this by noting that if this limit exists, then the value of the limit is the same as the value of the limit

$$\lim_{x \to \infty} \frac{x}{e^x}$$

where, in this latter limit, we are considering the continuous function

$$f(x) = \frac{x}{e^x}.$$

Since this function f satisfies all of the hypotheses of L’Hôpital’s Rule for an ∞/∞ indeterminate form, we have

$$\lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$$

so we can conclude that

$$\lim_{n \to \infty} \frac{n}{e^n} = 0.$$
Caution is in order here. If we have \(f(n) = a_n \) for all \(n \) and
\[
\lim_{x \to \infty} f(x)
\]
does not exist, we cannot conclude that
\[
\lim_{n \to \infty} a_n
\]
does not exist.

Example 8 Consider the sequence
\[
a_n = \sin(\pi n)
\]
and the function
\[
f(x) = \sin(\pi x).
\]
Clearly, if \(n \) is any positive integer, then \(f(n) = a_n \). However, note that
\[
\lim_{x \to \infty} f(x) \text{ does not exist}
\]
but
\[
\lim_{n \to \infty} a_n = 0.
\]

2.3 The Squeezing Principle

Theorem 9 (The Squeezing Principle) Suppose that \(a_n \) and \(b_n \) are sequences which both converge to the limit \(L \) and suppose that \(c_n \) is a sequence such that \(a_n \leq c_n \leq b_n \) for all \(n \) (or at least for all \(n \) from some point on). Then \(c_n \) also converges to the limit \(L \).

Example 10 Let us prove that
\[
\frac{\sin n}{n} \to 0
\]
Since
\[
-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n} \text{ for all } n = 1, 2, 3, \ldots
\]
and since the sequences \(-1/n\) and \(1/n\) both converge to 0, we have
\[
\frac{\sin n}{n} \to 0.
\]
Example 11 Let us prove that
\[\frac{97^n}{n!} \to 0. \]

We have
\[\frac{97^n}{n!} = \frac{97^n \cdot 97!}{97! \cdot n!} = \frac{97^n}{97! \cdot n!}. \tag{1} \]

Now, if \(n = 97 + k \) where \(k \) is a positive integer, we have
\[
\frac{97!}{n!} = \frac{1 \cdot 2 \cdots 96 \cdot 97}{1 \cdot 2 \cdots 96 \cdot 97 \cdot (97 + 1) \cdot (97 + 2) \cdots (97 + k)} = \frac{1}{(97 + 1) \cdot (97 + 2) \cdots (97 + k)} \leq \frac{1}{(97 + 1) \cdot (97 + 1) \cdots (97 + 1)} = \left(\frac{1}{98} \right)^k = \left(\frac{1}{98} \right)^{n - 97} = \frac{98^{97 - n}}{98^n} = \frac{98^{97}}{98^n}.
\]

Returning to (1), we have
\[
\frac{97^n}{n!} = \frac{97^n}{97! \cdot n!} \leq \frac{97^n \cdot 98^{97}}{97! \cdot 98^n} = \frac{98^{97}}{97!} \cdot \left(\frac{97}{98} \right)^n.
\]

Hence, we have that if \(n > 97 \), then
\[0 \leq \frac{97^n}{n!} \leq \frac{98^{97}}{97!} \cdot \left(\frac{97}{98} \right)^n. \]
Since \(\frac{97}{98} < 1 \), we have

\[
\left(\frac{97}{98} \right)^n \to 0.
\]

Also, \(\frac{98^{97}}{97!} \) is a constant so

\[
\frac{98^{97}}{97!} \cdot \left(\frac{97}{98} \right)^n \to 0.
\]

We conclude, by the Squeezing Principle, that

\[
\frac{97^n}{n!} \to 0.
\]