Instructions. Show all of your work! You will not get full credit if you don’t include correct notation. In particular, you must write “=” where needed.

1. (a) Sketch the parametric curve

\[x = 5 \sin(t) \]
\[y = 2 \cos(t) \]
\[0 \leq t \leq 2\pi. \]

Indicate with an arrow (on your sketch) the direction in which the curve is traced out as the parameter increases.

Answer: The curve, whose graph is shown here, is an ellipse. It is traced out clockwise.

(b) Find a Cartesian equation for this curve by eliminating the parameter \(t \).

Solution: Since

\[\frac{x}{5} = \sin(t) \]
\[\frac{y}{2} = \cos(t), \]

we have

\[\frac{x^2}{25} + \frac{y^2}{4} = 1. \]

2. Find the area of the region bounded by the curves \(y = x^2 \) and \(y = 4x - x^2 \).

Solution: The region is pictured below. The extremities are the points (0, 0) and (2, 4). The curve \(y = x^2 \) is on the bottom.
The area of the region is
\[
A = \int_{0}^{2} \left((4x - x^2) - x^2 \right) \, dx \\
= \int_{0}^{2} (4x - 2x^2) \, dx \\
= \frac{8}{3}.
\]

3. Find the volume of the solid obtained by revolving the region bounded by the curves \(y = x \) and \(y = \sqrt{x} \) about the line \(y = 1 \).

Solution: The region is pictured below.
Using the slab method, we obtain

\[V = \int_0^1 \pi \left((1 - x)^2 - (1 - \sqrt{x})^2 \right) \, dx = \frac{\pi}{6}. \]

Using the shell method, we obtain

\[V = \int_0^1 2\pi (1 - y) (y - y^2) \, dy = \frac{\pi}{6}. \]

4. Find the volume of a cap of a sphere of height \(h \) that sits atop a sphere of radius \(R \). (It’s the details that count!)

\[\text{Solution: } \text{This was done in class.} \]

5. The graph of the parametrically defined curve

\[\begin{align*}
 x &= e^t - t \\
 y &= 4e^{\frac{t}{2}} \\
 -8 &\leq t \leq 3
\end{align*} \]

is shown below. Find the length of this curve. (The answer is approximately equal to 31, but you should find the exact answer expressed in terms of the number \(e \).)
Solution: Since
\[
\frac{dx}{dt} = e^t - 1 \\
\frac{dy}{dt} = 2e^{\frac{t}{2}},
\]
we have
\[
\left(\frac{dx}{dt}\right)^2 = (e^t - 1)^2 = e^{2t} - 2e^t + 1 \\
\left(\frac{dy}{dt}\right)^2 = \left(2e^{\frac{t}{2}}\right)^2 = 4e^t.
\]
Thus
\[
\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = e^{2t} + 2e^t + 1 = (e^t + 1)^2.
\]
Therefore the arc length is
\[
\int_{-8}^{3} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt = \int_{-8}^{3} (e^t + 1) \, dt = e^3 - e^{-8} + 11 \approx 31.085.
\]