Use either the Integral Test or the Standard Comparison Test or the Limit Comparison Test to explain why the series
\[\sum_{n=1}^{\infty} \frac{2}{2n^2 + 1} \]
converges.

Solution: Note that for all integers \(n \geq 1 \) we have
\[\frac{2}{2n^2 + 1} < \frac{2}{2n^2} = \frac{2}{2n^2} = \frac{1}{n^2}. \]
Since
\[0 < \frac{2}{2n^2 + 1} < \frac{1}{n^2} \]
for all \(n \geq 1 \) and since the series
\[\sum_{n=1}^{\infty} \frac{1}{n^2} \]
converges (because it is a \(p \) series with \(p = 2 \), then the series
\[\sum_{n=1}^{\infty} \frac{2}{2n^2 + 1} \]
also converges by the Standard Comparison Test.