Consider the function

\[f(x, y) = -2x + 2. \]

1. What kind of surface is the graph of this function? Draw the graph.

2. Find the directional derivative of \(f \) at the point \((1, 0)\) in the direction of the vector \(\mathbf{v} = -3i + 4j \).

3. Find the direction in which \(f \) is increasing most rapidly at the point \((1, 0)\).

4. Find the rate of increase of \(f \) in the direction in which \(f \) is increasing most rapidly at the point \((1, 0)\).

Solution: The graph of \(f \) is a plane. This graph is shown below.
Graph of \(f(x, y) = -2x + 2 \)

A unit vector in the direction of the vector \(\mathbf{v} = -3\mathbf{i} + 4\mathbf{j} \) is

\[
\mathbf{u} = \frac{1}{|\mathbf{v}|} \mathbf{v} = -\frac{3}{5} \mathbf{i} + \frac{4}{5} \mathbf{j}
\]

and

\[
\nabla f(x, y) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} = -2\mathbf{i} + 0\mathbf{j} = -2\mathbf{i}
\]

which means that

\[
\nabla f(1, 0) = -2\mathbf{i}.
\]

(Note that \(\nabla f(x, y) \) is the same at any point since the graph is a plane.) The directional derivative of \(f \) at the point \((1, 0) \) in the direction of the vector \(\mathbf{v} = -3\mathbf{i} + 4\mathbf{j} \) is thus

\[
D_u f(1, 0) = \mathbf{u} \cdot \nabla f(1, 0) = \left(-\frac{3}{5} \mathbf{i} + \frac{4}{5} \mathbf{j} \right) \cdot (-2\mathbf{i}) = \frac{6}{5}.
\]
The maximum rate of change always occurs in the direction of the gradient vector. Thus, the maximum rate of change of \(f \) occurs in the direction of the vector \(-i\). The rate of change in this direction is \(|\nabla f (1, 0)| = |{-2i}| = 2\).