1. The curve \(\mathbf{r}(t) = (2\sin(t), 5t, 2\cos(t)) \), \(-10 \leq t \leq 10\) (which is a piece of a helix) has length

\[
\int_{-10}^{10} |\mathbf{r}'(t)| \, dt = \int_{-10}^{10} \sqrt{\left(2\cos(t)\right)^2 + (5)^2 + (-2\sin(t))^2} \, dt
\]

\[
= \int_{-10}^{10} \sqrt{29} \, dt
\]

\[
= 20\sqrt{29}.
\]

3. The curve \(\mathbf{r}(t) = \left(\sqrt{2} t, e^t, e^{-t}\right) \), \(0 \leq t \leq 1\) has length

\[
\int_{0}^{1} |\mathbf{r}'(t)| \, dt = \int_{0}^{1} \sqrt{\left(\sqrt{2}\right)^2 + (e^t)^2 + (e^{-t})^2} \, dt
\]

\[
= \int_{0}^{1} \sqrt{e^t + e^{-t}} \, dt
\]

\[
= \int_{0}^{1} (e^t + e^{-t}) \, dt
\]

\[
= (e^t - e^{-t}) \bigg|_{t=0}^{t=1}
\]

\[
= (e - e^{-1}) - (e^0 - e^0)
\]

\[
= (e - e^{-1}) - (1 - 1)
\]

\[
= e - e^{-1}.
\]

7. For \(\mathbf{r}(t) = e^t \sin(t)\mathbf{i} + e^t \cos(t)\mathbf{j} \), we have

\[
\mathbf{r}'(t) = e^t (\cos(t) + \sin(t))\mathbf{i} + e^t (-\sin(t) + \cos(t))\mathbf{j}
\]

and

\[
|\mathbf{r}'(t)| = \sqrt{(e^t (\cos(t) + \sin(t)))^2 + (e^t (-\sin(t) + \cos(t)))^2}
\]

\[
= \sqrt{2e^{2t}}
\]

\[
= \sqrt{2} e^t.
\]

Thus, the arc length function starting from \(t = 0 \) and measured in the direction of increasing \(t \) is

\[
s = \int_{0}^{t} |\mathbf{r}'(u)| \, du
\]

\[
= \int_{0}^{t} \sqrt{2} e^u \, du
\]

\[
= \sqrt{2} (e^t - 1).
\]

Solving the equation \(\sqrt{2} (e^t - 1) = s \) for \(t \), we obtain
\[t = \ln \left(1 + \frac{1}{\sqrt{2}} s \right). \]

Thus, using arc length \(s \) as our parameter, we can write the equation of this curve as

\[
\mathbf{q}(s) = \left(1 + \frac{1}{\sqrt{2}} s \right) \sin \left(\ln \left(1 + \frac{1}{\sqrt{2}} s \right) \right) \mathbf{i} \\
+ \left(1 + \frac{1}{\sqrt{2}} s \right) \cos \left(\ln \left(1 + \frac{1}{\sqrt{2}} s \right) \right) \mathbf{j}.
\]

9. For \(\mathbf{r}(t) = 3 \sin(t) \mathbf{i} + 4t \mathbf{j} + 3 \cos(t) \mathbf{k} \), we have

\[\mathbf{r}'(t) = 3 \cos(t) \mathbf{i} + 4 \mathbf{j} - 3 \sin(t) \mathbf{k} \]

and

\[|\mathbf{r}'(t)| = \sqrt{(3 \cos(t))^2 + (4)^2 + (-3 \sin(t))^2} = 5 \]

Thus, the arc length function starting from \(t = 0 \) and measured in the direction of increasing \(t \) is

\[s = \int_0^t |\mathbf{r}'(u)| \, du = \int_0^t 5 \, du = 5t. \]

Thus, using arc length \(s \) as our parameter, we can write the equation of this curve as

\[\mathbf{q}(s) = 3 \sin \left(\frac{1}{5} s \right) \mathbf{i} + \frac{4}{5} s \mathbf{j} + 3 \cos \left(\frac{1}{5} s \right) \mathbf{k} \]

11. For \(\mathbf{r}(t) = \langle 2 \sin(t), 5t, 2 \cos(t) \rangle \), the tangent vector is

\[\mathbf{r}'(t) = \langle 2 \cos(t), 5, -2 \sin(t) \rangle \]

and the length of this tangent vector is

\[|\mathbf{r}'(t)| = \sqrt{(2 \cos(t))^2 + (5)^2 + (-2 \sin(t))^2} = \sqrt{29}. \]

The unit tangent vector is

\[\mathbf{T}(t) = \frac{1}{|\mathbf{r}'(t)|} \mathbf{r}'(t) = \frac{1}{\sqrt{29}} \langle 2 \cos(t), 5, -2 \sin(t) \rangle. \]

Note that

\[\mathbf{T}'(t) = \frac{1}{\sqrt{29}} \langle -2 \sin(t), 0, -2 \cos(t) \rangle \]

and the length of this vector is

\[|\mathbf{T}'(t)| = \frac{1}{\sqrt{29}} \sqrt{(-2 \sin(t))^2 + (0)^2 + (-2 \cos(t))^2} = \frac{2}{\sqrt{29}}. \]

Thus, the unit normal vector is
In order to find the curvature using the formula
\[\kappa = \left| \frac{dT}{ds} \right|, \]
we must first find the relationship between the parameter \(t \) and the arc length \(s \). This is similar to the work done in problem 1 of this exercise set. We obtain
\[s = \sqrt{29} t. \]
Now note (by the Chain Rule) that
\[\frac{dT}{dt} = \frac{ds}{dt} \frac{dT}{ds} \]
which means that
\[\frac{dT}{ds} = \frac{\frac{dT}{dt}}{\frac{ds}{dt}} \]
\[= \frac{1}{\sqrt{29}} \left(\frac{1}{\sqrt{29}} (-2 \sin(t), 0, -2 \cos(t)) \right) \]
\[= \frac{1}{29} (-2 \sin(t), 0, -2 \cos(t)) \]
\[= -\frac{2}{29} (\sin(t), 0, \cos(t)). \]
We now obtain
\[\kappa = \left| \frac{dT}{ds} \right| = \frac{2}{29}. \]
Since this curve is a helix, it makes sense that it has constant curvature. Also, since we did all of the work of computing \(|T'(t)| \) and \(|r'(t)| \), it is much easier to compute the curvature using the formula
\[\kappa = \frac{|T'(t)|}{|r'(t)|} = \frac{2}{\sqrt{29}} = \frac{2}{29} \]
since that way we don’t have to deal with \(s \) at all.

13. For \(r(t) = \langle \frac{1}{4} t^3, t^2, 2t \rangle \), the tangent vector is
\[r'(t) = \langle t^2, 2t, 2 \rangle \]
and the length of this tangent vector is
The unit tangent vector is
\[T(t) = \frac{1}{|r'(t)|} r'(t) \]
\[= \frac{1}{t^2 + 2} \langle t^2, 2t, 2 \rangle \]
\[= \left\langle \frac{t^2}{t^2 + 2}, \frac{2t}{t^2 + 2}, \frac{2}{t^2 + 2} \right\rangle. \]

Note that
\[T'(t) = \left\langle \frac{4t}{(t^2 + 2)^2}, \frac{4 - 2t^2}{(t^2 + 2)^2}, \frac{-4t}{(t^2 + 2)^2} \right\rangle \]
and the length of this vector is
\[|T'(t)| = \sqrt{\left(\frac{4t}{(t^2 + 2)^2} \right)^2 + \left(\frac{4 - 2t^2}{(t^2 + 2)^2} \right)^2 + \left(\frac{-4t}{(t^2 + 2)^2} \right)^2} \]
\[= \frac{1}{(t^2 + 2)^2} \sqrt{16t^2 + (16 - 16t^2 + 4t^4) + 16t^2} \]
\[= \frac{1}{(t^2 + 2)^2} \sqrt{4t^4 + 16t^2 + 16} \]
\[= \frac{2}{(t^2 + 2)^2} \sqrt{(t^2 + 2)^2} \]
\[= \frac{2}{t^2 + 2}. \]

Thus, the unit normal vector is
\[N(t) = \frac{1}{|T'(t)|} T'(t) \]
\[= \frac{t^2 + 2}{2} \left\langle \frac{4t}{(t^2 + 2)^2}, \frac{4 - 2t^2}{(t^2 + 2)^2}, \frac{-4t}{(t^2 + 2)^2} \right\rangle \]
\[= \left\langle \frac{2t}{t^2 + 2}, \frac{2 - t^2}{t^2 + 2}, \frac{-2t}{t^2 + 2} \right\rangle. \]

The curvature using the formula
\[\kappa = \frac{|T'(t)|}{|r'(t)|} = \frac{2}{t^2 + 2} = \frac{2}{(t^2 + 2)^2}. \]

15. For \(r(t) = t^2 \mathbf{i} + t \mathbf{k} \) we have
\[r'(t) = 2i + k \]
\[|r'(t)| = \sqrt{(2t)^2 + 1^2} = \sqrt{4t^2 + 1} \]
\[r''(t) = 2i \]
\[r'(t) \times r''(t) = (2t_i + k) \times 2i \]
\[= 4t(i \times i) + 2(k \times i) \]
\[= 2j \]
\[|r'(t) \times r''(t)| = 2. \]

Thus, the curvature is
\[\kappa = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} = \frac{2}{(4t^2 + 1)^{3/2}}. \]

17. For \(r(t) = \sin(t)i + \cos(t)j + \sin(t)k \) we have
\[r'(t) = \cos(t)i - \sin(t)j + \cos(t)k \]
\[|r'(t)| = \sqrt{\cos^2(t) + (-\sin(t))^2 + \cos^2(t)} \]
\[= \sqrt{1 + \cos^2(t)} \]
\[r''(t) = -\sin(t)i - \cos(t)j - \sin(t)k \]
\[r'(t) \times r''(t) = \begin{vmatrix} i & j & k \\
\cos(t) & -\sin(t) & \cos(t) \\
-\sin(t) & -\cos(t) & -\sin(t) \end{vmatrix} \]
\[= i - k. \]
\[|r'(t) \times r''(t)| = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}. \]

Thus, the curvature is
\[\kappa = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} = \frac{\sqrt{2}}{(1 + \cos^2(t))^{3/2}}. \]

19. For \(r(t) = \sqrt{2}ti + e^tj + e^{-t}k \) we have
\[
\mathbf{r}'(t) = \sqrt{2} \mathbf{i} + e^t \mathbf{j} - e^{-t} \mathbf{k}
\]
\[
|\mathbf{r}'(t)| = \sqrt{\left(\sqrt{2}\right)^2 + (e^t)^2 + (e^{-t})^2}
\]
\[
= \sqrt{(e^t)^2 + 2e^t e^{-t} + (e^{-t})^2}
\]
\[
= \sqrt{(e^t + e^{-t})^2}
\]
\[
= e^t + e^{-t}
\]
\[
\mathbf{r}''(t) = e^t \mathbf{j} + e^{-t} \mathbf{k}
\]
\[
\mathbf{r}'(t) \times \mathbf{r}''(t) = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\sqrt{2} & e^t & -e^{-t} \\
0 & e^t & e^{-t}
\end{vmatrix}
\]
\[
= 2\mathbf{i} - \sqrt{2} e^{-t} \mathbf{j} + \sqrt{2} e^t \mathbf{k}.
\]
\[
|\mathbf{r}'(t) \times \mathbf{r}''(t)| = \sqrt{(2)^2 + \left(-\sqrt{2} e^{-t}\right)^2 + \left(\sqrt{2} e^t\right)^2}
\]
\[
= \sqrt{4 + 2(e^{-t})^2 + 2(e^t)^2}
\]
\[
= \sqrt{2} \sqrt{(e^t)^2 + 2e^t e^{-t} + (e^{-t})^2}
\]
\[
= \sqrt{2} \sqrt{(e^t + e^{-t})^2}
\]
\[
= \sqrt{2} (e^t + e^{-t}).
\]

Thus, the curvature is
\[
\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{\sqrt{2} (e^t + e^{-t})}{(e^t + e^{-t})^3} = \frac{\sqrt{2}}{(e^t + e^{-t})^2}.
\]

Since the point \((0, 1, 1)\) on this curve corresponds to the parameter value \(t = 0\), we see that the curvature at this point is
\[
\kappa(0) = \frac{\sqrt{2}}{(e^0 + e^{-0})^2} = \frac{\sqrt{2}}{4}.
\]

21. For the curve \(f(x) = x^3\), we have
\[
f'(x) = 3x^2
\]
\[
f''(x) = 6x
\]
so the curvature is
\[
\kappa(x) = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{3/2}} = \frac{6|x|}{\left(1 + 9x^4\right)^{3/2}}.
\]

23. For the curve \(f(x) = 4x^{5/2}\), we have
\[
f'(x) = 10x^{3/2}
\]
\[
f''(x) = 15x^{1/2}\]
so the curvature is
\[\kappa(x) = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{3/2}} = \frac{15x^{1/2}}{(1 + 100x^3)^{3/2}}. \]

25. For the curve \(f(x) = e^x \), we have
\[
\begin{align*}
f'(x) &= e^x \\
f''(x) &= e^x
\end{align*}
\]
so the curvature is
\[
\kappa(x) = \frac{|f''(x)|}{\left(1 + (f'(x))^2\right)^{3/2}} = \frac{e^x}{(1 + e^{2x})^{3/2}}.
\]

We would like to find at what value of \(x \) the curvature is maximum: Since
\[
\kappa'(x) = \frac{(1 + e^{2x})^{3/2}e^x - e^x \left(\frac{3}{2} (1 + e^{2x})^{1/2} (2e^{2x}) \right)}{(1 + e^{2x})^3}
\]
\[
= \frac{e^x(1 + e^{2x})^{1/2} (1 - 2e^{2x})}{(1 + e^{2x})^3}
\]
\[
= \frac{e^x (1 - 2e^{2x})}{(1 + e^{2x})^{5/2}}
\]
we see that \(\kappa'(x) = 0 \) when \(1 - 2e^{2x} = 0 \). Solving this equation for \(x \) gives us
\[
e^{2x} = 1/2 \text{ or } (e^x)^2 = 1/2 \text{ or } e^x = \sqrt{2}/2 \text{ or } x = \ln \left(\frac{\sqrt{2}}{2} \right).
\]
Since this \(x \) gives us the only critical point of \(\kappa \) and since it is clear that the curvature must be maximum at some point for the graph of \(f(x) = e^x \), we conclude that the curvature is maximum at the point
\[
\left(\ln \left(\frac{\sqrt{2}}{2} \right), \frac{\sqrt{2}}{2} \right) \approx (-0.34637, 0.70711).
\]
27. The curvature of the curve (drawn on page 724 of the textbook) seems to be greater at point P.

35. For $\mathbf{r}(t) = \langle t^2, \frac{2}{3}t^3, t \rangle$, we have

$$\mathbf{r}'(t) = \langle 2t, 2t^2, 1 \rangle$$

$$|\mathbf{r}'(t)| = \sqrt{4t^2 + 4t^4 + 1}$$

$$= 2 \sqrt{t^4 + t^2 + \frac{1}{4}}$$

$$= 2 \sqrt{(t^2 + \frac{1}{2})^2}$$

$$= 2 \left(t^2 + \frac{1}{2} \right)$$

$$= 2t^2 + 1$$

$$\mathbf{T}(t) = \frac{1}{|\mathbf{r}'(t)|} \mathbf{r}'(t)$$

$$= \left\langle \frac{2t}{2t^2 + 1}, \frac{2t^2}{2t^2 + 1}, \frac{1}{2t^2 + 1} \right\rangle$$

$$\mathbf{T}'(t) = \left\langle \frac{2 - 4t^2}{(2t^2 + 1)^2}, \frac{4t}{(2t^2 + 1)^3}, \frac{-4t}{(2t^2 + 1)^2} \right\rangle$$

The point $\left(1, \frac{2}{3}, 1 \right)$ corresponds to the parameter value $t = 1$ so
\[\mathbf{T}(1) = \left\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \right\rangle \]
\[\mathbf{N}(1) = \frac{1}{|\mathbf{T}'(1)|} \mathbf{T}'(1) \]
\[= \frac{1}{\sqrt{\left(\frac{2}{9}\right)^2 + \left(\frac{4}{9}\right)^2 + \left(\frac{4}{9}\right)^2}} \left\langle -\frac{2}{9}, \frac{4}{9}, -\frac{4}{9} \right\rangle \]
\[= \left\langle -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3} \right\rangle \]

and

\[\mathbf{B}(1) = \mathbf{T}(1) \times \mathbf{N}(1) \]
\[= \left| \begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\
\end{array} \right| \]
\[= -\frac{2}{3} \mathbf{i} + \frac{1}{3} \mathbf{j} + \frac{2}{3} \mathbf{k}. \]

37. For \(\mathbf{r}(t) = (2 \sin(3t), t, 2 \cos(3t)) \), we have
\[\mathbf{r}'(t) = (6 \cos(3t), 1, -6 \sin(3t)) \]
\[|\mathbf{r}'(t)| = \sqrt{37} \]
\[\mathbf{T}(t) = \frac{1}{\sqrt{37}} \left\langle 6 \cos(3t), 1, -6 \sin(3t) \right\rangle \]
\[\mathbf{T}'(t) = \frac{1}{\sqrt{37}} \left\langle -18 \sin(3t), 0, -18 \cos(3t) \right\rangle \]
The point \((0, \pi, -2)\) corresponds to the parameter value \(t = \pi \) so
\[\mathbf{T}(\pi) = \frac{1}{\sqrt{37}} \left\langle -6, 1, 0 \right\rangle \]
\[\mathbf{N}(\pi) = \frac{1}{|\mathbf{T}'(\pi)|} \mathbf{T}'(\pi) \]
\[= \left\langle 0, 0, 1 \right\rangle \]

and

\[\mathbf{B}(\pi) = \mathbf{T}(\pi) \times \mathbf{N}(\pi) \]
\[= \left| \begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\frac{6}{\sqrt{37}} & \frac{1}{\sqrt{37}} & 0 \\
0 & 0 & 1 \\
\end{array} \right| \]
\[= \frac{1}{\sqrt{37}} \mathbf{i} + \frac{6}{\sqrt{37}} \mathbf{j}. \]

Since the binormal vector is orthogonal to the osculating plane, the osculating plane has equation
\[x + 6(y - \pi) = 0 \]

and since the unit tangent vector is orthogonal to the normal plane, the normal plane has equation
\[-6x + (y - \pi) = 0. \]

39. The ellipse \(9x^2 + 4y^2 = 36\) can be written as
\[\frac{x^2}{4} + \frac{y^2}{9} = 1. \]

Parametric equations of this ellipse are
\[x = 2 \cos(t) \]
\[y = 3 \sin(t). \]

For this parametric curve \(\mathbf{r}(t) \) we have
\[\mathbf{r}'(t) = \langle -2 \sin(t), 3 \cos(t) \rangle \]
\[|\mathbf{r}'(t)| = \sqrt{4 \sin^2(t) + 9 \cos^2(t)} \]
\[\mathbf{r}''(t) = \langle -2 \cos(t), -3 \sin(t) \rangle \]
\[\mathbf{r}'(t) \times \mathbf{r}''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 \sin(t) & 3 \cos(t) & 0 \\ -2 \cos(t) & -3 \sin(t) & 0 \end{vmatrix} = 6 \mathbf{k} \]
\[|\mathbf{r}'(t) \times \mathbf{r}''(t)| = 6 \]
\[\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{6}{\left(4 \sin^2(t) + 9 \cos^2(t)\right)^{3/2}}. \]

The point \((2, 0)\) on the ellipse corresponds to the parameter value \(t = 0\) so at this point the curvature is
\[\kappa = \frac{6}{\left(4 \sin^2(0) + 9 \cos^2(0)\right)^{3/2}} = \frac{2}{3} \]

The osculating circle at this point thus has radius \(9/2\) and is centered at the point \((-\frac{5}{2}, 0)\). An equation for the osculating circle is
\[\left(x + \frac{5}{2}\right)^2 + y^2 = \frac{81}{4}. \]

Parametric equations of this circle (used to graph the circle) are
\[x = -\frac{5}{2} + \frac{9}{2} \cos(t) \]
\[y = \frac{9}{2} \sin(t). \]

The point \((0, 3)\) on the ellipse corresponds to the parameter value \(t = \pi/2\) so at this point the curvature is
\[\kappa = \frac{6}{\left(4 \sin^2\left(\frac{\pi}{2}\right) + 9 \cos^2\left(\frac{\pi}{2}\right)\right)^{3/2}} = \frac{3}{4} \]

The osculating circle at this point thus has radius \(4/3\) and is centered at the
point \((0, \frac{5}{3})\). An equation for the osculating circle is
\[x^2 + \left(y - \frac{5}{3} \right)^2 = \frac{16}{9}. \]
Parametric equations of this circle (used to graph the circle) are
\[x = \frac{4}{3} \cos(t) \]
\[y = \frac{5}{3} + \frac{4}{3} \sin(t). \]