1. By looking at the picture in the book, we see that
\[\int_C \nabla f \cdot dr = 50 - 10 = 40. \]

3. For the vector field
\[\mathbf{F}(x,y) = (6x + 5y)i + (5x + 4y)j, \]
we have
\[\frac{\partial P}{\partial y} = 5 \]
\[\frac{\partial Q}{\partial x} = 5. \]
Since the (implied) domain of \(\mathbf{F} \) is \(\mathbb{R}^2 \), which is a simply–connected set, we conclude that \(\mathbf{F} \) is conservative.

To find \(f \) such that \(\nabla f = \mathbf{F} \), we begin with
\[f_x(x,y) = 6x + 5y. \]
This gives us
\[f(x,y) = 3x^2 + 5xy + h(y). \]
Differentiation with respect to \(y \) then gives us
\[f_y(x,y) = 5x + h'(y). \]
However, we must also have
\[f_y(x,y) = 5x + 4y. \]
Thus
\[h'(y) = 4y \]
which means that
\[h(y) = 2y^2 + C. \]
Since we are only looking for a single potential function, we might as well take \(C = 0 \). We thus obtain
\[f(x,y) = 3x^2 + 5xy + 2y^2. \]
Let us check that this is correct:
\[\nabla f(x,y) = (6x + 5y)i + (5x + 4y)j = \mathbf{F}(x,y). \]

5. For the vector field
\[\mathbf{F}(x,y) = xe^y i + ye^x j, \]
we have
Since $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$, we conclude that the vector field \mathbf{F} is not conservative.

7. For the vector field
 \[\mathbf{F}(x, y) = (2x \cos(y) - y \cos(x))\mathbf{i} + (-x^2 \sin(y) - \sin(x))\mathbf{j}, \]
 we have
 \[\frac{\partial P}{\partial y} = -2x \sin(y) - \cos(x) \]
 \[\frac{\partial Q}{\partial x} = -2x \sin(y) - \cos(x). \]
 Since the (implied) domain of \mathbf{F} is \mathbb{R}^2, which is a simply–connected set, we conclude that \mathbf{F} is conservative.
 To find f such that $\nabla f = \mathbf{F}$, we begin with
 \[f_x(x, y) = 2x \cos(y) - y \cos(x). \]
 This gives us
 \[f(x, y) = x^2 \cos(y) - y \sin(x) + h(y). \]
 Differentiation with respect to y then gives us
 \[f_y(x, y) = -x^2 \sin(y) - \sin(x) + h'(y). \]
 However, we must also have
 \[f_y(x, y) = -x^2 \sin(y) - \sin(x). \]
 Thus
 \[h'(y) = 0 \]
 which means that
 \[h(y) = C. \]
 Since we are only looking for a single potential function, we might as well take $C = 0$. We thus obtain
 \[f(x, y) = x^2 \cos(y) - y \sin(x). \]
 Let us check that this is correct:
 \[\nabla f(x, y) = (2x \cos(y) - y \cos(x))\mathbf{i} + (-x^2 \sin(y) - \sin(x))\mathbf{j} \]
 \[= \mathbf{F}(x, y). \]

9. For the vector field
 \[\mathbf{F}(x, y) = (ye^x + \sin(y))\mathbf{i} + (e^x + x \cos(y))\mathbf{j}, \]
 we have
 \[\frac{\partial P}{\partial y} = e^x + \cos(y) \]
 \[\frac{\partial Q}{\partial x} = e^x + \cos(y). \]
Since the (implied) domain of F is \mathbb{R}^2, which is a simply–connected set, we conclude that F is conservative.

To find f such that $\nabla f = F$, we begin with

$$f_x(x,y) = ye^x + \sin(y).$$

This gives us

$$f(x,y) = ye^x + x\sin(y) + h(y).$$

Differentiation with respect to y then gives us

$$f_y(x,y) = e^x + x\cos(y) + h'(y).$$

However, we must also have

$$f_y(x,y) = e^x + x\cos(y).$$

Thus

$$h'(y) = 0$$

which means that

$$h(y) = C.$$

Since we are only looking for a single potential function, we might as well take $C = 0$. We thus obtain

$$f(x,y) = ye^x + x\sin(y).$$

Let us check that this is correct:

$$\nabla f(x,y) = (ye^x + \sin(y))\mathbf{i} + (e^x + x\cos(y))\mathbf{j} = F(x,y).$$

11. The vector field $F(x,y) = 2xy\mathbf{i} + x^2\mathbf{j}$ is conservative, so all line integrals of F are path independent. A potential function for F is $f(x,y) = x^2y$ so, by the Fundamental Theorem for line integrals, the integral of F over any path beginning at $(1,2)$ and ending at $(3,2)$ is

$$\int F \cdot dr = \int \nabla f \cdot dr$$

$$= f(3,2) - f(1,2)$$

$$= 3^2(2) - 1^2(2)$$

$$= 16.$$

13. First we find a potential function, f, for the vector field

$$F(x,y) = x^3y^4\mathbf{i} + x^4y^3\mathbf{j}.$$

The potential function must satisfy

$$f_x(x,y) = x^3y^4$$

and thus

$$f(x,y) = \frac{1}{4}x^4y^4 + h(y)$$

and

$$f_y(x,y) = x^4y^3 + h'(y).$$

Since f must also satisfy
\[f_y(x,y) = x^4 y^3, \]

we obtain \(h'(y) = 0 \) and thus \(h(y) = C \). Therefore, a potential function for \(\mathbf{F} \) is

\[f(x,y) = \frac{1}{4} x^4 y^4. \]

The path

\[\mathbf{r}(t) = \sqrt{t} \mathbf{i} + (1 + t^3) \mathbf{j} \]

\[0 \leq t \leq 1 \]

has initial point \(\mathbf{r}(0) = (0,1) \) and terminal point \(\mathbf{r}(1) = (1,2) \). Thus, by the Fundamental Theorem for Line integrals, we have

\[\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(1,2) - f(0,1) \]

\[= \frac{1}{4} (1)^4 (2)^4 - \frac{1}{4} (0)^4 (1)^4 \]

\[= 4. \]

15. First we find a potential function, \(f \), for the vector field

\[\mathbf{F}(x,y,z) = yz \mathbf{i} + xz \mathbf{j} + (xy + 2z) \mathbf{k}. \]

The potential function must satisfy

\[f_x(x,y,z) = yz \]

and thus

\[f(x,y,z) = xyz + h(y,z) \]

and

\[f_y(x,y,z) = xz + \frac{\partial h}{\partial y}. \]

Since \(f \) must also satisfy

\[f_y(x,y,z) = xz \]

we see that \(\frac{\partial h}{\partial y} = 0 \) and hence that

\[h(y,z) = g(z). \]

We now have

\[f(x,y,z) = xyz + g(z) \]

This tells us that

\[f_z(x,y,z) = xy + g'(z) \]

Since \(f \) must also satisfy

\[f_z(x,y,z) = xy + 2z, \]

we obtain \(g'(z) = 2z \) and thus \(g(z) = z^2 + C \). Therefore, a potential function for \(\mathbf{F} \) is

\[f(x,y,z) = xyz + z^2. \]

By the Fundamental Theorem for Line integrals, we have
First we find a potential function, f, for the vector field
\[\mathbf{F}(x,y,z) = y^2 \cos(z) \mathbf{i} + 2xy \cos(z) \mathbf{j} - xy^2 \sin(z) \mathbf{k}. \]
The potential function must satisfy
\[f_x(x,y,z) = y^2 \cos(z) \]
and thus
\[f(x,y,z) = xy^2 \cos(z) + h(y,z) \]
and
\[f_y(x,y,z) = 2xy \cos(z) + \frac{\partial h}{\partial y}. \]
Since f must also satisfy
\[f_y(x,y,z) = 2xy \cos(z) \]
we see that $\frac{\partial h}{\partial y} = 0$ and hence that
\[h(y,z) = g(z). \]
We now have
\[f(x,y,z) = xy^2 \cos(z) + g(z) \]
This tells us that
\[f_z(x,y,z) = -xy^2 \sin(z) + g'(z) \]
Since f must also satisfy
\[f_z(x,y,z) = -xy^2 \sin(z), \]
we obtain $g'(z) = 0$ and thus $g(z) = C$.
Therefore, a potential function for \mathbf{F} is
\[f(x,y,z) = xy^2 \cos(z). \]
The path
\[\mathbf{r}(t) = t^2 \mathbf{i} + \sin(t) \mathbf{j} + t \mathbf{k} \]
\[0 \leq t \leq \pi \]
has initial point $\mathbf{r}(0) = (0,0,0)$ and terminal point $\mathbf{r}(\pi) = (\pi^2,0,\pi)$.
By the Fundamental Theorem for Line integrals, we have
\[\int_C \mathbf{F} \cdot d\mathbf{r} = f(\pi^2,0,\pi) - f(0,0,0) \]
\[= (\pi^2)(0)^2 \cos(\pi) - (0)(0)^2 \cos(0) \]
\[= 0. \]
19. For the vector field
\[\mathbf{F}(x,y) = 2x \sin(y) \mathbf{i} + (x^2 \cos(y) - 3y^2) \mathbf{j}, \]
we have
\[\frac{\partial P}{\partial y} = 2x \cos(y) \]
\[\frac{\partial Q}{\partial x} = 2x \cos(y). \]
Since the (implied) domain of \(F \) is \(\mathbb{R}^2 \), which is a simply-connected set, we conclude that \(F \) is conservative (and hence that all line integrals of \(F \) are path-independent).
To find \(f \) such that \(\nabla f = F \), we begin with
\[f_x(x, y) = 2x \sin(y). \]
This gives us
\[f(x, y) = x^2 \sin(y) + h(y). \]
Differentiation with respect to \(y \) then gives us
\[f_y(x, y) = x^2 \cos(y) + h'(y). \]
However, we must also have
\[f_y(x, y) = x^2 \cos(y) - 3y^2. \]
Thus
\[h'(y) = -3y^2 \]
which means that
\[h(y) = -y^3 + C. \]
Since we are only looking for a single potential function, we might as well take \(C = 0 \). We thus obtain
\[f(x, y) = x^2 \sin(y) - y^3. \]
Now, by the Fundamental Theorem for Line Integrals, for a path with initial point \((-1, 0)\) and terminal point \((5, 1)\), we have
\[\int_C 2x \sin(y) \, dx + (x^2 \cos(y) - 3y^2) \, dy = \int_C F \cdot dr \\
= f(5, 1) - f(-1, 0) \\
= 25 \sin(1) - 1. \]
21. The force field
\[F(x, y) = x^2 y^3 \mathbf{i} + x^3 y^2 \mathbf{j} \]
is conservative and has potential function
\[f(x, y) = \frac{1}{3} x^3 y^3. \]
Thus, the work done by this force field in moving an object from the point \((0, 0)\) to the point \((2, 1)\) is
23. The vector field, \mathbf{F}, shown in the picture (page 944) is not conservative. If it were, then it would have to satisfy

$$\frac{\partial P}{\partial y}(x, y) = \frac{\partial Q}{\partial x}(x, y)$$

at all points (x, y). However, the picture shows that this is not true.

For example, look at the vertical column of vectors that is the second to the left from the y axis. (Hence $x = x_0$ is constant for all vectors in this column.) If we move from bottom to top (in the direction of increasing y) along this column, we see that the vectors make a transition from pointing to the left to pointing to the right. There is some point (x_0, y_0) in the third quadrant at which $\mathbf{F}(x_0, y_0) = \mathbf{0}$. Also, since $P(x_0, y)$ transitions from negative to positive as y increases, we see that

$$\frac{\partial P}{\partial y}(x_0, y_0) > 0.$$

However, if we now look at the horizontal row of vectors with $y = y_0$, we see that these vectors transition from pointing up to pointing down as x increases. This means that

$$\frac{\partial Q}{\partial x}(x_0, y_0) < 0.$$

Therefore it is not true that

$$\frac{\partial P}{\partial y}(x_0, y_0) = \frac{\partial Q}{\partial x}(x_0, y_0).$$

29. The set $\{(x, y) \mid x > 0$ and $y > 0\}$ is open, connected, and simply–connected.

30. The set $\{(x, y) \mid x \neq 0\}$ is open, but not connected or simply–connected.

31. The set $\{(x, y) \mid 1 < x^2 + y^2 < 4\}$ is open and connected, but not simply–connected.

32. The set $\{(x, y) \mid x^2 + y^2 \leq 1$ or $4 \leq x^2 + y^2 \leq 9\}$ is neither open, nor connected, nor simply–connected.

33. Consider the vector field

$$\mathbf{F}(x, y) = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$$

with domain $D = \{(x, y) \mid (x, y) \neq (0, 0)\}$. The vector field \mathbf{F} satisfies

$$\int \mathbf{F} \cdot d\mathbf{r} = f(2, 1) - f(0, 0)$$

$$= \frac{1}{3}(2)^3(1)^3 - \frac{1}{3}(0)^3(0)^3$$

$$= \frac{8}{3}.$$
$$\frac{\partial P}{\partial y} = \frac{(x^2 + y^2)(-1) + y(2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\frac{\partial Q}{\partial x} = \frac{(x^2 + y^2)(1) - x(2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

and thus

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

However, since the domain D is not a simply–connected set, we are **not** guaranteed that the vector field F is conservative. In fact, F is not conservative as we will show by computing line integrals of F over two different paths joining that begin at the point $(1, 0)$ and end at the point $(-1, 0)$.

First, we use the path

$$r(t) = \cos(t)i + \sin(t)j$$

$$0 \leq t \leq \pi.$$

(This path traces out the top half of the unit circle counterclockwise.)

For this path, we have

$$\int_C F \cdot dr = \int_0^{\pi} F(r(t)) \cdot r'(t) \, dt$$

$$= \int_0^{\pi} (-\sin(t)i + \cos(t)j) \cdot (-\sin(t)i + \cos(t)j) \, dt$$

$$= \int_0^{\pi} 1 \, dt$$

$$= \pi.$$

Next, we use the path

$$r(t) = \cos(t)i - \sin(t)j$$

$$0 \leq t \leq \pi.$$

(This path traces out the bottom half of the unit circle clockwise.)

For this path, we have

$$\int_C F \cdot dr = \int_0^{\pi} F(r(t)) \cdot r'(t) \, dt$$

$$= \int_0^{\pi} (\sin(t)i + \cos(t)j) \cdot (-\sin(t)i - \cos(t)j) \, dt$$

$$= \int_0^{\pi} -1 \, dt$$

$$= -\pi.$$