Answers and Solutions to Section 9.6 Homework Problems
S. F. Ellermeyer

1.
 a. \(f(40, 15) = 25 \). This means that when the wind has been blowing at
 40 knots for 15 hours, the wave height is 25 feet.
 b. \(h = f(30, t) \) gives the wave height as a function of time when the
 wind is blowing at 30 knots. It is an increasing function of \(t \).
 c. \(h = f(v, 30) \) gives the wave height as a function of wind speed when
 the wind has been blowing for 30 hours. It is an increasing function
 of \(v \).

3. For \(f(x, y) = x^2e^{3y} \):
 a. \(f(2, 0) = 2^2e^{3\cdot0} = 4 \)
 b. The (implied) domain of \(f \) is \(\mathbb{R}^2 \).
 c. The range of \(f \) is \([0, \infty) \).

5. \(\{(x, y) \mid x + y \geq 0\} \). This is a half–plane (in \(\mathbb{R}^2 \)) lying on one side and
 including the line \(x + y = 0 \).

7. \(\{(x, y) \mid y \geq x^2 \text{ and } x \neq \pm 1\} \). This is all points on and above the parabola
 \(y = x^2 \) except those points on the vertical lines \(x = \pm 1 \).

9. a plane parallel to the \(xy \) plane
11. a plane
13. a parabolic cylinder
15.
 a. VI
 b. V
 c. I
 d. IV
 e. II
 f. III
17. an elliptic paraboloid

19. a hyperbolic paraboloid

21. We can write $x = 4y^2 + z^2 - 4z + 4$ as $x = 4y^2 + (z - 2)^2$ or as

$$\frac{x}{4} = \frac{y^2}{1} + \frac{(z - 2)^2}{4}.$$

This is an equation of an elliptic paraboloid.

23.
 a. In \mathbb{R}^2, the equation $x^2 + y^2 = 1$ is an equation representing a circle.
 b. In \mathbb{R}^3, the equation $x^2 + y^2 = 1$ is an equation representing a circular cylinder.
 c. The equation $x^2 + z^2 = 1$ is a circle in \mathbb{R}^2 and a circular cylinder in \mathbb{R}^3.

25.
 a. For the equation $x^2 + y^2 - z^2 = 1$, if we set $x = k$, we obtain $y^2 - z^2 = 1 - k^2$ (an equation of a hyperbola assuming that $|k| < 1$). Likewise, if we set $y = k$, we obtain $x^2 - z^2 = 1 - k^2$ (an equation of a hyperbola assuming that $|k| < 1$). If we set $z = k$, we obtain $x^2 + y^2 = 1 + k^2$ (an equation of a circle).
 b. The hyperboloid of one sheet in part a has its central axis parallel to the z axis. By similar reasoning, the hyperboloid of one sheet $x^2 - y^2 + z^2 = 1$ has its central axis parallel to the y axis.
 c. The equation $x^2 + y^2 + 2y - z^2 = 0$ can be written as $x^2 + (y + 1)^2 - z^2 = 1$. This is a translation of the hyperboloid in part a by one unit in the negative y direction.