1.

\[V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \geq 0, y \geq 0 \right\}. \]

a. Suppose that \(u \) and \(v \) are in \(V \). Then

\[u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \]

where \(u_1 \geq 0 \) and \(u_2 \geq 0 \) and

\[v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \]

where \(v_1 \geq 0 \) and \(v_2 \geq 0 \).

This implies that \(u + v \) is in \(V \) because

\[u + v = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \]

and it is clearly true that \(u_1 + v_1 \geq 0 \) and \(u_2 + v_2 \geq 0 \).

b. Let

\[u = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \]

and let \(c = -3 \). Then

\[cu = -3 \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -9 \\ -15 \end{bmatrix} \]

is not in \(V \). (Note that part a shows that \(V \) is closed under addition and part b shows that \(V \) is not closed under scalar multiplication.)

3.

\[H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x^2 + y^2 \leq 1 \right\}. \]

If we let

\[u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \]

and \(c = 2 \), then \(u \in H \) but \(cu \notin H \). Thus, \(H \) is not closed under scalar multiplication and so \(H \) is not a subspace of \(\mathbb{R}^2 \).
5. Note that P_n is the vector space of all polynomial functions of degree at most n. Thus, P_n is the set of all functions p (with domain $(-\infty, \infty)$) of the form

$$p(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_2 t^2 + a_1 t + a_0$$

where the coefficients $a_n, a_{n-1}, \ldots, a_2, a_1, a_0$ can be any real constants.

The set of all polynomial functions of the form $p(t) = at^2$ is a subspace of P_n.

7. The set of all polynomial functions with degree at most n and with integer coefficients is not a subspace of P_n because it is not closed under scalar multiplication. For example, the function $p(t) = 3t^2 - 4t + 12$ is in this set (considered as a subset of P_2), but the function $0.5p(t) = 1.5t^2 - 2t + 6$ is not.

9. If H is the set of all vectors in \mathbb{R}^3 that have the form

$$\begin{bmatrix}
 s \\
 3s \\
 2s
\end{bmatrix},$$

then

$$H = \text{Span} \left\{ \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \right\}$$

and thus H is a subspace of \mathbb{R}^3.

11. If H is the set of all vectors in \mathbb{R}^3 that have the form

$$\begin{bmatrix}
 5b + 2c \\
 b \\
 c
\end{bmatrix},$$

then

$$H = \text{Span} \left\{ \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}$$

and thus H is a subspace of \mathbb{R}^3.

13. a. $\mathbf{w} \notin \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$. There are only three vectors in the set $\langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$. They are the vectors $\mathbf{v}_1, \mathbf{v}_2, \text{ and } \mathbf{v}_3$ themselves.

b. There are infinitely many vectors in the set $\text{Span} \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$. This set consists of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \text{ and } \mathbf{v}_3$.

c.
shows that $w \in \text{Span}\{v_1, v_2, v_3\}$. For example, w can be expressed as $w = v_1 + v_2$.

15. The set of all vectors of the form

$$\begin{bmatrix} 3a + b \\ 4 \\ a - 5b \end{bmatrix}$$

is not a vector space because, for example, the vectors

$$\begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}$$

are in this set, but the sum of these two vectors,

$$\begin{bmatrix} 4 \\ 8 \\ -4 \end{bmatrix},$$

is not in this set.

17. The set of all vectors of the form

$$\begin{bmatrix} a - b \\ b - c \\ c - a \\ b \end{bmatrix}$$

is a vector space. In fact, this set of vectors is precisely

$$\text{Span} \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \right\}.$$
a. The zero vector (which is really the zero function in this case) is in the described set because
\[0 = 0 \cos(\omega t) + 0 \sin(\omega t). \]

b. The set is closed under addition because if we take any two vectors
\[y_1(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) \]
and
\[y_2(t) = c_3 \cos(\omega t) + c_4 \sin(\omega t) \]
in this set, then the sum
\[
(y_1 + y_2)(t) \\
= (c_1 \cos(\omega t) + c_2 \sin(\omega t)) + (c_3 \cos(\omega t) + c_4 \sin(\omega t)) \\
= (c_1 + c_3) \cos(\omega t) + (c_2 + c_4) \sin(\omega t)
\]
is also in this set.

c. This set is closed under scalar multiplication because if we take any vector
\[y(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) \]
in this set and any scalar \(c \), then the vector
\[
(cy)(t) \\
= c(c_1 \cos(\omega t) + c_2 \sin(\omega t)) \\
= (cc_1) \cos(\omega t) + (cc_2) \sin(\omega t)
\]
is also in this set.

21. The set of all matrices of the form
\[
\begin{bmatrix}
 a & b \\
 0 & d
\end{bmatrix}
\]
is a subspace of \(M_{2 \times 2} \) because

a.
\[
0 = \begin{bmatrix}
 0 & 0 \\
 0 & 0
\end{bmatrix},
\]
is in this set.

b. If we take two vectors
\[
M_1 = \begin{bmatrix}
 a_1 & b_1 \\
 0 & d_1
\end{bmatrix}
\]
and
\[
M_2 = \begin{bmatrix}
 a_2 & b_2 \\
 0 & d_2
\end{bmatrix}
\]
in this set, then the sum
\[M_1 + M_1 = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 + 0 & d_1 + d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ 0 & d_1 + d_2 \end{bmatrix} \]
is in this set (so the set is closed under addition).

c. If we take a vector
\[
M = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}
\]
in this set and any scalar \(c \), the vector
\[
cM = \begin{bmatrix} c \cdot a & c \cdot b \\ c \cdot 0 & c \cdot d \end{bmatrix} = \begin{bmatrix} ca & cb \\ 0 & cd \end{bmatrix}
\]
is in this set (so the set is closed under scalar multiplication).

23.

a. This statement is not really clear. If the statement is saying that \(f(t) = 0 \) for some particular value of \(t \), then \(f \) is the zero vector in \(V \), then the statement is false. However, if the statement is saying that \(f(t) = 0 \) for all \(t \in \mathbb{R} \), then \(f \) is the zero vector in \(V \), then the statement is true.

b. I guess the intention is that this statement is false. The set of all arrows in three dimensional space is an example of a vector space, but in general, a vector can be something much more general (such as a matrix or a function).

c. False. The set \(H \) must also be closed under addition and scalar multiplication.

d. True.

e. True.

24.

a. True.

b. True.

c. True. (It is a subspace of itself.)

d. False. \(\mathbb{R}^2 \) is not even a subset of \(\mathbb{R}^3 \). However, the set of all vectors of the form
\[
\begin{bmatrix} a \\ b \\ 0 \end{bmatrix}
\]
is a subspace of \(\mathbb{R}^3 \) that is really “just like” \(\mathbb{R}^2 \).

e. False (or actually just worded in a way that does not make sense). The correct wording is: A subset \(H \) of a vector space \(V \) is a subspace of \(V \) if the following conditions are satisfied:

i. The zero vector of \(V \) is in \(H \).
ii. For every pair of vectors \(u \) and \(v \) in \(H \), the vector \(u + v \) is also in \(H \).

iii. For every vector \(u \) in \(H \) and for every scalar \(c \), the vector \(cu \) is in \(H \).

26. **Proof that for any \(u \in V \), the vector \(-u\) is the unique vector in \(V \) such that \(u + (-u) = 0 \).**

Let \(u \in V \) be given and suppose that \(w \) satisfies \(u + w = 0 \). Then

\[
\begin{align*}
-\u + (\u + \w) &= -\u + 0 & \text{by adding } -\u \text{ to both sides} \\
(-\u + \u) + \w &= -\u + 0 & \text{by associativity of addition} \\
0 + \w &= -\u + 0 & \text{property of additive inverses} \\
\w + 0 &= -\u + 0 & \text{commutative property of addition} \\
\w &= -\u & \text{by the property of the zero vector}
\end{align*}
\]

27. **done in class.**

28. **Proof that for every scalar \(c \), we have \(c0 = 0 \).**

For any given scalar \(c \), we have

\[
\begin{align*}
\c0 &= \c(0 + 0) & \text{additive property of the zero vector} \\
\c0 &= \c0 + \c0 & \text{distribution of scalar multiplication over addition} \\
\c0 + (-\c0) &= (\c0 + \c0) + (-\c0) & \text{adding } -\c0 \text{ to both sides} \\
0 &= \c0 + (\c0 + (-\c0)) & \text{property of additive inverses} \\
0 &= \c0 + 0 & \text{associativity of addition} \\
0 &= \c0 + 0 & \text{property of additive inverses} \\
0 &= \c0 & \text{additive property of the zero vector}
\end{align*}
\]

29. **Proof that for every \(u \in V \), we have \(-1u = -u\).**

Let \(u \) be a vector in \(V \). Then

\[
\begin{align*}
\u + (-1\u) &= 1\u + (-1\u) & \text{using the axiom that } 1\u = \u \\
\u + (-1\u) &= (1 + (-1))\u & \text{distribution of scalar mult. over reg. add.} \\
\u + (-1\u) &= 0\u & \text{using the fact that } 1 + (-1) = 0 \\
\u + (-1\u) &= 0 & \text{using the fact that } 0\u = \u
\end{align*}
\]

Since \(\u + (-1\u) = 0 \), it must be the case (by Exercise 26) that \(-1\u = -\u\).

30. **If \(u \) is a vector in some vector space \(V \) and \(c \) is a non–zero scalar such that \(cu = 0 \), then**
\[
\frac{1}{c} (cu) = \frac{1}{c} \cdot 0 \quad \text{multiplying both sides by } \frac{1}{c}
\]
\[
(\frac{1}{c}c)u = \frac{1}{c} \cdot 0 \quad \text{associativity}
\]
\[
1u = \frac{1}{c} \cdot 0 \quad \text{the fact that } \frac{1}{c}c = 1
\]
\[
u = \frac{1}{c} \cdot 0 \quad \text{the axiom that } 1u = u
\]
\[
u = 0 \quad \text{the result of Exercise 28}
\]

31. Suppose that \(H \) is a subspace of a vector space \(V \) and suppose that \(H \) contains two particular vectors, \(u \) and \(v \). Since \(H \) is closed under addition and scalar multiplication, then \(H \) must also contain all vectors of the form \(c_1u + c_2v \) (for any scalars \(c_1 \) and \(c_2 \)). This means that \(H \) must in fact contain Span\{\(u, v \)\}.

32. We are given that \(H \) and \(K \) are both subspaces of a vector space \(V \) and we want to prove that \(H \cap K \) (which is by definition the set of all vectors that belong to both \(H \) and \(K \)) is also a subspace of \(V \).

a. Since \(0 \in H \) and \(0 \in K \), then \(0 \in H \cap K \).

b. Suppose that \(u \in H \cap K \) and \(v \in H \cap K \). Since \(u \) and \(v \) are both in \(H \), then \(u + v \) is also in \(H \). In addition, since \(u \) and \(v \) are both in \(K \), then \(u + v \) is also in \(K \). This means that \(u + v \in H \cap K \).

c. Suppose that \(u \in H \cap K \) and that \(c \) is a scalar. Since \(u \in H \), then \(cu \) is also in \(H \). Also, since \(u \in K \), then \(cu \) is also in \(K \). This means that \(cu \in H \cap K \).

Note that if \(H \) and \(K \) are subspaces of \(V \), then it is generally not true that \(H \cup K \) (which is the set of all vectors that are in either \(H \) or \(K \)) is a subspace of \(V \). For example, in \(\mathbb{R}^2 \), we could take \(H \) to be any line through the origin and take \(K \) to be any other (different) line through the origin. Then \(H \) and \(K \) are both subspaces of \(\mathbb{R}^2 \) but \(H \cup K \) is not a subspace of \(\mathbb{R}^2 \) because if we take the sum of a non–zero vector in \(H \) and a non–zero vector in \(K \), then we get a non–zero vector which is neither in \(H \) nor in \(K \). Thus, \(H \cup K \) is not closed under addition. (Specific example: if \(H \) is the horizontal axis and \(K \) is the vertical axis, then \(u = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \in H \cup K \) and \(v = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in H \cup K \), but \(u + v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin H \cup K \).)