Solutions to Selected Section 4.4 Homework Problems
Problems 1-21 (odd) and 16.

S. F. Ellermeyer

1. Recall that if $B = \{b_1, b_2, \ldots, b_n\}$ is a basis for \mathbb{R}^n and P_B is the matrix
 \[P_B = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}, \]
 then for any vector $x \in \mathbb{R}^n$, we have
 \[x = P_B [x]_B \]
 and
 \[[x]_B = P_B^{-1} x. \]

For the basis and coordinate vector given in this problem, we have
\[x = P_B [x]_B \]
\[= \begin{bmatrix} 3 & -4 \\ -5 & 6 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} \]
\[= \begin{bmatrix} 3 \\ -7 \end{bmatrix}. \]

5. \[[x]_B = P_B^{-1} x \]
\[= \begin{bmatrix} 1 & 2 \\ -3 & -5 \end{bmatrix}^{-1} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \]
\[= \begin{bmatrix} -5 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} \]
\[= \begin{bmatrix} 8 \\ -5 \end{bmatrix}. \]

9. The change of coordinates matrix from the basis, B, given in this problem to the standard basis is
 \[P_B = \begin{bmatrix} 2 & 1 \\ -9 & 8 \end{bmatrix}. \]
\[[x]_B = P_B^{-1}x \]
\[= \begin{bmatrix} 3 & -4 \\ -5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ -6 \end{bmatrix} \]
\[= \begin{bmatrix} -3 & -2 \\ -\frac{5}{2} & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \end{bmatrix} \]
\[= \begin{bmatrix} 6 \\ 4 \end{bmatrix}. \]

We can check that this correct by observing that
\[\begin{bmatrix} 2 \\ -6 \end{bmatrix} = 6 \begin{bmatrix} 3 \\ -5 \end{bmatrix} + 4 \begin{bmatrix} -4 \\ 6 \end{bmatrix}. \]

13. We want to find \(c_1, c_2, \) and \(c_3 \) such that
\[c_1(1 + t^2) + c_2(t + t^2) + c_3(1 + 2t + t^2) = 1 + 4t + 7t^2. \]
If we write this equation as
\[(c_1 + c_3) + (c_2 + 2c_3)t + (c_1 + c_2 + c_3)t^2 = 1 + 4t + 7t^2, \]
we see that we need to solve the linear system
\[c_1 + c_3 = 1 \]
\[c_2 + 2c_3 = 4 \]
\[c_1 + c_2 + c_3 = 7. \]

Since
\[\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 1 & 1 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \]
we see that \(c_1 = 2, c_2 = 6, \) and \(c_3 = -1. \) Thus, the coordinate vector of the function \(p \) relative to the basis \(B \) is
\[[p]_B = \begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix}. \]

As a check, observe that
\[2(1 + t^2) + 6(t + t^2) - (1 + 2t + t^2) = 1 + 4t + 7t^2. \]

15.

a. True.

b. False. See what I wrote in the solution to problem 1.

c. False. The vector spaces \(P_2 \) and \(\mathbb{R}^3 \) are isomorphic, however.
16.
 a. True.
 b. False. The correspondence $x \mapsto [x]_B$ is called the coordinate mapping. The correspondence $[x]_B \mapsto x$ is the inverse of the coordinate mapping.
 c. True. In fact, all planes in \mathbb{R}^3 are isomorphic to \mathbb{R}^2 in the sense that there always exists a one–to–one mapping of a plane in \mathbb{R}^3 onto \mathbb{R}^2. However, our definition of “isomorphism” pertains only to vector spaces. A plane in \mathbb{R}^3 is a vector space if and only if this plane passes through the origin in \mathbb{R}^3. According to our definition, only planes in \mathbb{R}^3 that pass through the origin in \mathbb{R}^3 are isomorphic to \mathbb{R}^2. In other branches of mathematics (notably Topology), an isomorphism between two sets A and B is simply defined to be a one–to–one mapping of A onto B. According to this definition, all planes in \mathbb{R}^3 are isomorphic to \mathbb{R}^2.

17. Note that

\[
\begin{bmatrix}
1 & 2 & -3 & 1 \\
-3 & -8 & 7 & 1
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & -5 & 5 \\
0 & 1 & 1 & -2
\end{bmatrix}.
\]

Thus, we see, for example that

\[
5\begin{bmatrix}
1 \\
-3
\end{bmatrix} - 2\begin{bmatrix}
2 \\
-8
\end{bmatrix} + 0\begin{bmatrix}
-3 \\
7
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

and

\[
10\begin{bmatrix}
1 \\
-3
\end{bmatrix} - 3\begin{bmatrix}
2 \\
-8
\end{bmatrix} + 1\begin{bmatrix}
-3 \\
7
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}.
\]

19. Suppose that V is a vector space and suppose that $S = \{b_1, b_2, \ldots, b_n\}$ is a set of vectors in V with the property that every vector in V can be expressed uniquely as a linear combination of the vectors in S.

We want to prove that S is a basis for V. This means that there are two things to prove: that S is a linearly independent set and that S spans V.

To prove that S is linearly independent, we consider the equation

\[c_1b_1 + c_2b_2 + \cdots + c_nb_n = 0.\]

We know that one solution of the above equation is the trivial solution: $c_1 = c_2 = \cdots = c_n = 0$. However, we are hypothesizing that every vector in V (including the zero vector) can be expressed in one and only one way as a linear combination of the vectors in S. Thus, the trivial solution must be the only solution of the above equation. This tells us that S is linearly independent.

The fact that S spans V follows immediately from our hypothesis, which says that every vector in V can be expressed as a linear combination of the vectors in S.

\[3\]
We conclude that S is a basis for V.

21. Since each vector $x \in \mathbb{R}^2$ satisfies

$$[x]_B = P_B^{-1}x,$$

the matrix of the linear transformation $x \mapsto [x]_B$ is

$$P_B^{-1} = \begin{bmatrix} 1 & -2 \\ -4 & 9 \end{bmatrix}^{-1} = \begin{bmatrix} 9 & 2 \\ 4 & 1 \end{bmatrix}.$$