The Inverse of a Square Matrix

The $n \times n$ identity matrix is the $n \times n$ matrix that has entries of 1 all along its main diagonal and entries of 0 elsewhere. We denote this matrix by I_n or just by I if it is clear what n is. For example,

$$ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$

and

$$ I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. $$

The matrix I_n acts as a multiplicative identity for matrix multiplication because if A is any $n \times n$ matrix, then

$$ AI_n = I_n A = A. $$
Definition of the Inverse of a Square Matrix

Suppose that A is an $n \times n$ matrix. If there exists an $n \times n$ matrix, B such that $AB = BA = I_n$, then B is said to be a **multiplicative inverse** of A.

Example

Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

and verify that

$$B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

is a multiplicative inverse of A.
Theorem (Uniqueness of Inverses)

If B and C are both inverses of a given matrix A, then $B = C$. In other words, the inverse of a matrix (if it exists) is unique.

Proof

(to be given in class).

Invertibility

If a matrix, A, has an inverse, then we say that A is invertible. If A is invertible, then we know that it has a unique inverse. Thus we can unambiguously use the notation A^{-1} to denote the inverse of an invertible matrix A.
The Inverse of a 2×2 Matrix

Let A be the 2×2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

1) Show that if $ad - bc \neq 0$, then the inverse of A is

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

2) Show that if $ad - bc = 0$, then A is not invertible.
Inverses of Larger Matrices

To motivate our method for finding the inverse of square matrices whose size is larger than 2×2, let us find the inverse of the 3×3 matrix

$$A = \begin{bmatrix}
1 & 1 & -2 \\
-1 & 2 & 0 \\
0 & -1 & 1
\end{bmatrix}.$$

To do this we let

$$A^{-1} = \begin{bmatrix}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{bmatrix}$$

and then solve $AA^{-1} = I_3$ or

$$\begin{bmatrix}
1 & 1 & -2 \\
-1 & 2 & 0 \\
0 & -1 & 1
\end{bmatrix} \begin{bmatrix}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}.$$
General Procedure for Finding Inverses

Suppose that \(A \) is an \(n \times n \) matrix and we would like to find \(A^{-1} \) (if it exists). If write the unknown matrix, \(A^{-1} \), as

\[
A^{-1} = [x_1 \ x_2 \ \cdots \ x_n]
\]

where \(x_1, x_2, \ldots, x_n \) are the column vectors of \(A^{-1} \) and write \(I_n \) as

\[
I_n = [e_1 \ e_2 \ \cdots \ e_n]
\]

(where \(e_i \) is the vector with a 1 in position \(i \) and zeros elsewhere), we can then observe that all \(n \) of the equations

\[
Ax_i = e_i
\]

must be satisfied.

Since it is a waste of effort to solve each one of these \(n \) equations separately, we do it in one fell swoop by row reducing the augmented matrix \([A \ | \ I_n]\). Once this is done, we will have an augmented matrix of the form \([\text{rref}(A) \ | \ B]\). If \(\text{rref}(A) = I_n \), then \(B = A^{-1} \). If \(\text{rref}(A) \neq I_n \), then \(A \) is not invertible.
Example

Use the algorithm described above to find the inverse (if it exists) of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -2 & 0 \\ 0 & 1 & -3 \end{bmatrix}$$

Example

Use the algorithm described above to find the inverse (if it exists) of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -2 & 0 \\ 1 & 0 & -3 \end{bmatrix}.$$
Theorem (Products of Invertible Matrices)

1) If A is an invertible $n \times n$ matrix, then A^{-1} is also invertible and $(A^{-1})^{-1} = A$.

2) If A and B are both invertible $n \times n$ matrices, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

3) If either one (or both) of A and B is not invertible, then AB is not invertible.

Proof

(to be given in class)
Homework

In Section 1.4 (page 45), do problems 1–29 (odd).