Suppose that G is a group and that $H \subseteq G$. If H is also a group (under the same operation as G), then we say that H is a **subgroup** of G. If G is a group with identity element e, then $E = \{e\}$ is a subgroup of G called the **trivial subgroup** of G. It is also true, for any group G, that G is a subgroup of itself. If H is a subgroup of G with $H \neq G$, then H is called a **proper subgroup** of G.

Example 1 The set of even integers is a proper subgroup of the group of all integers under addition. The set of all multiples of 5 is also a proper subgroup of the integers under addition. In fact, if k is any fixed integer, then

$$k \mathbb{Z} = \{kn \mid n \in \mathbb{Z}\} = \{\ldots, -3k, -2k, -k, 0, k, 2k, 3k, \ldots\}$$

is a subgroup of the integers under addition. Note that if $k = 0$, then we obtain the trivial subgroup $\{0\}$; whereas if $k = \pm 1$, then we obtain the entire group \mathbb{Z}. Thus, unless $k = \pm 1$, $k \mathbb{Z}$ is a proper subgroup of \mathbb{Z}.

Example 2 Consider the multiplicative group $\mathbb{Q} - \{0\}$. A subgroup of this group is $H = \{-1, 1\}$. Another subgroup of $\mathbb{Q} - \{0\}$ is

$$H = \{2^n \mid n \text{ is an integer}\} = \{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \ldots\}.$$

To see this, note that H is closed under multiplication because if m and n are any integers, then

$$2^m \cdot 2^n = 2^{m+n}.$$

Also, H clearly satisfies the associative property (since Q does and $H \subseteq Q$), $1 \in H$, and every member of H has a multiplicative inverse in H.

1
Example 3 Let us determine all of the subgroups of the group $Z_4 = \{0, 1, 2, 3\}$ under addition. Of course, Z_4 is a subgroup of Z_4 and we also have the trivial subgroup $\{0\}$. Suppose that 1 is in some subgroup, H, of Z_4. Then, since H is closed (under addition), we see that $1+1 = 2 \in H$, $1+2 = 3 \in H$ and also $0 \in H$ because the identity element must be in H (or because $1+3 = 0 \in H$). Thus, if $1 \in H$, then it must be true that $H = Z_4$. Now suppose that H is a subgroup of Z_4 with $3 \in H$. Then $3+3 = 2 \in H$ and $3+2 = 1 \in H$ and we see once again that $H = Z_4$. The only non-trivial proper subgroup of Z_4 is $H = \{0, 2\}$.

Example 4 The group $U_8 = \{1, 3, 5, 7\}$ (under multiplication) has four non-trivial proper subgroups. They are $\{1\}$, $\{1, 3\}$, $\{1, 5\}$, and $\{1, 7\}$. Notice that $\{1, 3, 5\}$ is not a subgroup of U_8 because $3 \cdot 5 = 7$ so $\{1, 3, 5\}$ is not closed under multiplication. Likewise, $\{1, 3, 7\}$ and $\{1, 5, 7\}$ are not subgroups of U_8.

The proof of the following Proposition is left as homework.

Proposition 5 If G is a group and H_1 and H_2 are subgroups of G, then $H_1 \cap H_2$ is a subgroup of G.

1 Cyclic Groups

A group, G, is said to be cyclic if there exists an element $a \in G$ such that $G = \{a^n \mid n \text{ is an integer}\}$. (Note that if G is an additive group, then we would write na instead of a^n.) If a is an element or G that has the property described above, then we say that a is a generator of G and we write $G = \langle a \rangle$.

Example 6 The group, Z, of integers under addition is a cyclic group with generator 1. This is because, for any integer n, we have $n = n \cdot 1$. Note that -1 is also a generator of Z. Thus we could write $Z = \langle 1 \rangle$ or $Z = \langle -1 \rangle$. Z does not have any generators other than 1 and -1.

Example 7 The group, $2Z$, of even integers is cyclic with generator 2 because any even integer can be written in the form $n \cdot 2$ where n is an integer. Thus $2Z = \langle 2 \rangle$. (It is also true that $2Z = \langle -2 \rangle$.)

2
Example 8 The group, \(Z_4 = \{0, 1, 2, 3\} \), under addition is cyclic with generator 1 because

\[
\begin{align*}
1 &= 1 \\
1 + 1 &= 2 \\
1 + 1 + 1 &= 3 \\
1 + 1 + 1 + 1 &= 0.
\end{align*}
\]

Thus every element of \(Z_4 \) can be written as \(n \cdot 1 \) for some integer \(n \). Does \(Z_4 \) have any other generators?

\[
\begin{align*}
2 &= 2 \\
2 + 2 &= 0 \\
2 + 2 + 2 &= 2 \\
\text{etc.}
\end{align*}
\]

shows that 2 is not a generator of \(Z_4 \).

\[
\begin{align*}
3 &= 3 \\
3 + 3 &= 2 \\
3 + 3 + 3 &= 1 \\
3 + 3 + 3 + 3 &= 0
\end{align*}
\]

shows that 3 is a generator of \(Z_4 \). Thus \(Z_4 = \langle 1 \rangle = \langle 3 \rangle \).

Exercise 9 It is clear that, for any integer \(n \geq 1 \), the additive group \(Z_n \) is cyclic with generator 1. Find all of the generators of \(Z_5 \), \(Z_6 \), \(Z_7 \), and \(Z_8 \). Can you make a general conjecture about the generators of \(Z_n \)?

Example 10 The group \(U_8 = \{1, 3, 5, 7\} \) under multiplication is not cyclic because \(3^2 = 1 \), \(5^2 = 1 \), and \(7^2 = 1 \) so neither 3, nor 5, nor 7 generates \(U_8 \).

Even though not all groups are cyclic, all groups contain at least one cyclic subgroup – the subgroup \(E = \{e\} = \langle e \rangle \). In general, if \(G \) is any group and \(a \) is an element of \(G \), then \(\langle a \rangle \) is an abelian subgroup of \(G \) (even if \(G \) itself is not abelian). The subgroup \(\langle a \rangle \) is called the cyclic subgroup of \(G \) generated by \(a \). Of course, it may be the case that \(\langle a \rangle = G \) (in which case \(G \) itself is cyclic) or it may be the case that \(\langle a \rangle = \langle b \rangle \) for two different elements, \(a \) and \(b \), of \(G \).
Proposition 11 Let G be a group and let $a \in G$. Then $\langle a \rangle = \{a^n \mid n \text{ is an integer}\}$ is an abelian subgroup of G.

Proof. Since, for any integers m and n, we have $a^m a^n = a^{m+n}$, we see that $\langle a \rangle$ is closed under the operation of G. Also, since G obeys the associative law, then so does $\langle a \rangle$ just by virtue of the fact that $\langle a \rangle \subseteq G$. In addition, $a^0 = e \in \langle a \rangle$, and for any member, a^n, of $\langle a \rangle$, we see that $a^{-n} \in \langle a \rangle$ and a^{-n} is the inverse of a^n. This proves that $\langle a \rangle$ is a group (and hence a subgroup of G.) To see that $\langle a \rangle$ is an abelian group, note that for any two integers m and n, we have $a^m a^n = a^{n+m}$.

Example 12 Consider the dihedral group D_3 whose Cayley table is shown below. Find the cyclic subgroups of D_3 that are generated by each of the members of D_3.

\[
\begin{array}{c|cccccccc}
* & R_0 & R_1 & R_2 & F_a & F_b & F_c \\
\hline
R_0 & R_0 & R_1 & R_2 & F_a & F_b & F_c \\
R_1 & R_1 & R_2 & R_0 & F_c & F_a & F_b \\
R_2 & R_2 & R_0 & R_1 & F_b & F_c & F_a \\
F_a & F_a & F_b & F_c & R_0 & R_1 & R_2 \\
F_b & F_b & F_c & F_a & R_2 & R_0 & R_1 \\
F_c & F_c & F_a & F_b & R_1 & R_2 & R_0 \\
\end{array}
\]

Solution: The subgroup generated by R_0 is $\langle R_0 \rangle = R_0$. For R_1 we have

\[
\begin{align*}
R_1^1 &= R_1 \\
R_1^2 &= R_2 \\
R_1^3 &= R_0
\end{align*}
\]

so

\[\langle R_1 \rangle = \{R_0, R_1, R_2\}.\]

Likewise we see that

\[\langle R_2 \rangle = \{R_0, R_1, R_2\}.\]

Now note that

\[
\begin{align*}
F_a^1 &= F_a \\
F_a^2 &= R_0
\end{align*}
\]
so

\[\langle F_a \rangle = \{ R_0, F_a \} . \]

Likewise it can be seen that \(\langle F_b \rangle = \{ R_0, F_b \} \) and that \(\langle F_c \rangle = \{ R_0, F_c \} \). Thus \(D_3 \) has one cyclic subgroup of order three and three cyclic subgroups of order two. (The cyclic subgroup of order three is generated by two different elements of \(D_3 \).)

Example 13 Consider the multiplicative group \(Q \setminus \{0\} \). Find the cyclic subgroup of \(Q \) generated by \(1/2 \).

Solution: Observe that

\[
\left(\frac{1}{2} \right)^0 = 1 \\
\frac{1}{2} = 1 \\
\left(\frac{1}{2} \right)^2 = \frac{1}{4}
\]

etc.

and

\[
\left(\frac{1}{2} \right)^{-1} = 2 \\
\left(\frac{1}{2} \right)^{-2} = 4
\]

etc.

Thus

\[\left\langle \frac{1}{2} \right\rangle = \left\{ \ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, \ldots \right\} . \]

Proposition 14 Suppose that \(G \) is a group of finite order with identity element \(e \) and suppose that \(a \in G \). Then there exists an integer \(k > 0 \) such that \(a^k = e \).

Proof. If \(a = e \), then \(a^1 = e \). Thus suppose that \(a \neq e \). Since \(G \) is of finite order, it is not possible that all of the powers \(a^1, a^2, a^3, \ldots \) are different.
from one another (for then \(G \) would have infinite order). Therefore, there must exist some positive integers \(m \) and \(n \) with \(m > n \) such that \(a^m = a^n \). However this implies that \(a^{m-n} = a^0 = e \) (and note that \(m - n \) is a positive integer). This proves the assertion.

Corollary 15 If \(G \) is a group of finite order and \(H \) is a non–empty subset of \(G \) that is closed under the operation of \(G \), then \(H \) is a subgroup of \(G \).

Proof. It is clear that \(H \) satisfies the associative property (because \(G \) does and \(H \subseteq G \)). Also, \(H \neq \emptyset \) so there exists an element \(a \in H \). By the preceding Proposition (since \(G \) is of finite order), there must exist some positive integer \(k \) such that \(a^k = e \). Since \(H \) is closed under the operation of \(G \), it must therefore be true that \(e \in H \). Finally, we will show that if \(a \in H \), then \(a^{-1} \in H \). If \(a = e \), then \(a^{-1} = e \) so \(a^{-1} \in H \). If \(a \neq e \), the let \(k \) be a positive integer such that \(a^k = e \). Since \(a \neq e \), we know that \(k \geq 2 \). Also \(a^{-1} (a^k) = a^{-1} e \) and thus \(a^{-1} = a^{k-1} \). Since \(H \) is closed under the operation of \(G \), it must be the case that \(a^{k-1} \in H \). Therefore \(a^{-1} \in H \). This proves that \(H \) is a subgroup of \(G \).

Definition 16 Suppose that \(G \) is a group and suppose that \(a \in G \). We define the order of \(a \), denoted by \(|a| \), to be the order of the cyclic subgroup generated by \(a \). Thus \(|a| = |\langle a \rangle| \). (Note that \(|a| \) is either a positive integer or infinity.)

Example 17 In Example 12, we learned that \(|R_1| = |R_2| = 3 \), whereas \(|F_a| = |F_b| = |F_c| = 2 \) in \(D_3 \). In Example 13, we learned that \(|1/2| = \infty \) in \(Q - \{0\} \).

The following corollary to Proposition 14 insures that if \(G \) is a group of finite order and \(a \in G \), then the entire subgroup \(\langle a \rangle \) is actually generated by positive powers of \(a \).

Corollary 18 If \(G \) is a group of finite order and \(a \in G \), then

\[
\langle a \rangle = \{a^n \mid n \text{ is a positive integer} \}.
\]

Proof. We know (by definition) that

\[
\langle a \rangle = \{a^n \mid n \text{ is an integer} \}.
\]
Let
\[A = \{a^n \mid n \text{ is a positive integer}\}. \]

We want to prove (under the assumption that \(G \) is of finite order) that \(\langle a \rangle = A \). First we will dispense with the case that \(a = e \). In this case, it is clear that \(\langle a \rangle = \{e\} \) and also that \(A = \{e\} \). Therefore \(\langle a \rangle = A \). Henceforth we assume that \(a \neq e \).

It is clear that \(A \subseteq \langle a \rangle \). Thus we only need to prove that \(\langle a \rangle \subseteq A \).

Let \(x \in \langle a \rangle \). Then there exists an integer \(m \) such that \(x = a^m \). If \(m > 0 \), then \(x \in A \). Thus suppose that \(m \leq 0 \). By Proposition 14, we know that there exists a positive integer \(k \) such that \(a^k = e \). Since \(k \) is a positive integer, we can find a positive integer \(r \) such that \(rk > -m \). (Note that \(-m \geq 0 \) because we are assuming that \(m \leq 0 \).) Since \(a^{rk} = (a^k)^r = e^r = e \), we obtain
\[x = a^m = ea^m = a^{rk}a^m = a^{rk+m} \]
and since \(rk + m > 0 \) we see that \(x \in A \). Therefore \(\langle a \rangle \subseteq A \) and we have now proved that \(\langle a \rangle = A \). ■

2 Product Groups

Suppose that \(G_1 \) is a group with operation \(*_1\) and that \(G_2 \) is a group with operation \(*_2\). Then we can from a new group called the **product group** of \(G_1 \) and \(G_2 \) by using the Cartesian product \(G_1 \times G_2 \) as the underlying set and defining the operation, \(*\), on \(G_1 \times G_2 \) as follows:
\[(a,b) * (c,d) = (a *_1 c, b *_2 d). \]

The group \(G_1 \times G_2 \) is also called the **direct product** of \(G_1 \) and \(G_2 \). If additive notation is in order (due to the fact that additive notation is being used for both \(G_1 \) and \(G_2 \)), then we usually write \(G_1 \oplus G_2 \) instead of \(G_1 \times G_2 \) and we call \(G_1 \oplus G_2 \) the **direct sum** of \(G_1 \) and \(G_2 \).

Example 19 Let us consider the direct sum \(Z_2 \oplus Z_3 \). Since \(Z_2 = \{0,1\} \) and \(Z_3 = \{0,1,2\} \), the elements of \(Z_2 \oplus Z_3 \) are \((0,0)\), \((0,1)\), \((0,2)\), \((1,0)\), \((1,1)\),
and \((1, 2)\). The Cayley table for \(Z_2 \oplus Z_3\) is as follows:

<table>
<thead>
<tr>
<th>(*)</th>
<th>((0, 0))</th>
<th>((0, 1))</th>
<th>((0, 2))</th>
<th>((1, 0))</th>
<th>((1, 1))</th>
<th>((1, 2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>((0, 0))</td>
<td>((0, 1))</td>
<td>((0, 2))</td>
<td>((1, 0))</td>
<td>((1, 1))</td>
<td>((1, 2))</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>((0, 1))</td>
<td>((0, 2))</td>
<td>((0, 0))</td>
<td>((1, 1))</td>
<td>((1, 2))</td>
<td>((1, 0))</td>
</tr>
<tr>
<td>((0, 2))</td>
<td>((0, 2))</td>
<td>((0, 0))</td>
<td>((0, 1))</td>
<td>((1, 2))</td>
<td>((1, 0))</td>
<td>((1, 1))</td>
</tr>
<tr>
<td>((1, 0))</td>
<td>((1, 0))</td>
<td>((1, 1))</td>
<td>((1, 2))</td>
<td>((0, 0))</td>
<td>((0, 1))</td>
<td>((0, 2))</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>((1, 1))</td>
<td>((1, 2))</td>
<td>((0, 1))</td>
<td>((0, 2))</td>
<td>((0, 0))</td>
<td></td>
</tr>
<tr>
<td>((1, 2))</td>
<td>((1, 2))</td>
<td>((1, 0))</td>
<td>((1, 1))</td>
<td>((0, 2))</td>
<td>((0, 0))</td>
<td>((0, 1))</td>
</tr>
</tbody>
</table>

Let us compare the above group with the dihedral group \(D_3\) which is also a group of order 6 (and whose table is given in Example 12). \(D_3\) has one cyclic subgroup of order three and three cyclic subgroups of order two. In \(Z_2 \oplus Z_3\), we have

\[
2(0, 1) = (0, 2) \\
3(0, 1) = (0, 0)
\]

so \(|(0, 1)| = 3\). Likewise \(|(0, 2)| = 3\) and we see that \:\{(0, 0), (0, 1), (0, 2)\} is a subgroup of order 3 in \(Z_2 \oplus Z_3\).

Also

\[
2(1, 0) = (0, 0)
\]

so \(|(1, 0)| = 2\) and \:\{(0, 0), (1, 0)\} is a subgroup of order 2 in \(Z_2 \oplus Z_3\). However, \(Z_2 \oplus Z_3\) does not have any more cyclic subgroups of order 2 because

\[
2(1, 1) = (0, 2) \\
3(1, 1) = (1, 0) \\
4(1, 1) = (0, 1) \\
5(1, 1) = (1, 2) \\
6(1, 1) = (0, 0)
\]

and this shows that \(|(1, 1)| = 6\) and hence that \(Z_2 \oplus Z_3 = \langle(1, 1)\rangle\) (meaning that \(Z_2 \oplus Z_3\) is in fact a cyclic group). It can also be confirmed that \(|(1, 2)| = 6\). We conclude that \(D_3\) and \(Z_2 \oplus Z_3\) (although both groups of order 6) are essentially different from each other. \(Z_2 \oplus Z_3\) is cyclic and \(D_3\) is not. Also, \(Z_2 \oplus Z_3\) is abelian and \(D_3\) is not.
We note, referring to the above example, that $Z_2 \oplus Z_3$ has subgroups that are “copies” of Z_2 and Z_3. In particular $\{(0,0),(1,0)\}$ is a copy of Z_2 and $\{(0,0),(0,1),(0,2)\}$ is a copy of Z_3. This is always the case with direct products (or direct sums). In $G_1 \times G_2$ (with respective identity elements e_1 and e_2), the subgroup $\{(x,e_2) \mid x \in G_1\}$ is a copy of G_1 and the subgroup $\{(e_1,y) \mid y \in G_2\}$ is a copy of G_2. More generally, in a direct product $G_1 \times G_2 \times \cdots \times G_n$, the subgroup $\{(e_1,e_2,\ldots,x,\ldots,e_n) \mid x \in G_i\}$ is a copy of G_i. Because of this fact, for any two positive integers m and n such that n is divisible by m, we can always construct a group of order n that has a subgroup of order m.

Example 20 Suppose that we would like to construct a group of order 24 that contains a copy of the Klein 4–Group, K. Since $|K| = 4$ and 24 is divisible by 4, then this construction is possible. We can choose any group of order 6, say D_3, and be assured that $D_3 \times K$ is a group of order 24 that contains a copy of K. (Of course, $D_3 \times K$ also contains a copy of D_3.)

We conclude with a theorem that gives the order of an element in a product group in terms of the orders of the components of this element in their respective groups.

Theorem 21 Let G_1, G_2, \ldots, G_n be groups of finite order and let $a_i \in G_i$ for each $i = 1,2,\ldots,n$. Then the order of the element (a_1,a_2,\ldots,a_n) in the product group $G_1 \times G_2 \times \cdots \times G_n$ is the least common multiple of the orders of a_1, a_2,\ldots,a_n in the respective groups G_i, $i = 1,2,\ldots,n$.

In order to prove Theorem 21, we will need a Lemma that is of interest in its own right.

Lemma 22 Suppose that G is group and suppose that $a \in G$ with $|a| = n$. Then $a^m = e$ if and only if m is divisible by n.

Proof. Suppose that m is divisible by n. Then $m = qn$ where q is an integer. This implies that

$$a^m = a^{qn} = (a^n)^q = e^q = e.$$

Now suppose that m is not divisible by n. Then $m \neq 0$ and $m \neq \pm n$. If $0 < m < n$, then $a^m \neq e$ because this would contradict the fact that $|a| = n$.

9
If \(m > n \), then the Division Algorithm gives us integers \(q \) and \(r \) such that \(m = qn + r \) and \(0 < r < n \). In this case we have

\[
a^m = a^{qn+r} = (a^n)^q a^r = e^q a^r = e a^r = a^r
\]

and we know that \(a^r \neq e \) (because \(0 < r < n \)) and thus \(a^m \neq e \). Finally, if \(m < 0 \), then \(-m > 0\) and we thus know that \(a^{-m} \neq e \). But this implies that \(a^m \neq e \) (because if \(a^m = e \) then we must have \(a^{-m}a^m = a^{-m}e \) and hence \(e = a^{-m} \)).

We now give the proof of Theorem 21. We will prove the theorem only for the case of two groups, \(G_1 \) and \(G_2 \).

Proof of Theorem 21: Suppose that \(G_1 \) and \(G_2 \) are groups of finite order (with respective operations \(*_1\) and \(*_2\) and respective identity elements \(e_1 \) and \(e_2 \)) and suppose that \(a_1 \in G_1 \) and \(a_2 \in G_2 \). Suppose also that \(|a_1| = s\) and \(|a_2| = t\). We want to prove that \(|(a_1, a_2)| = \text{lcm}(s, t)\).

To begin, note that \(a_1^s = e_1 \) and \(a_2^t = e_2 \). Letting \(m = \text{lcm}(s, t) \), we obtain

\[
(a_1, a_2)^m = (a_1^m, a_2^m) = (e_1, e_2)
\]

(by the preceding lemma, because \(m \) is divisible by both \(s \) and \(t \)). To prove that \(|(a_1, a_2)| = m\), we must show that \((a_1, a_2)^n \neq (e_1, e_2)\) for any integer \(n \) such that \(0 < n < m \). To this end, suppose that \(0 < n < m \) and suppose that \((a_1, a_2)^n = (e_1, e_2)\). Then \((a_1^n, a_2^n) = (e_1, e_2)\) which means that \(a_1^n = e_1 \) and \(a_2^n = e_2 \). By the preceding lemma, it must then be the case that \(n \) is divisible by both \(s \) and \(t \) or, in other words, that \(n \) is a common multiple of \(s \) and \(t \). Since the least common multiple of any two numbers divides any common multiple of those two numbers, it must then be the case that \(n \) is divisible by \(m \). However this is a contradiction because \(0 < n < m \). We thus conclude that \(|(a_1, a_2)| = m\).