Be able to state and apply the **Well-Ordering Principle**, **General Well-Ordering Principle**, and **Principle of Induction**.

Be able to define the following terms:

1. what it means for an integer \(b \neq 0 \) to **divide** an integer \(a \).
2. \(\gcd (a, b) \) and \(\lcm (a, b) \).
3. what it means for two integers, \(a \) and \(b \), to be **relatively prime**.
4. what it means for an integer \(p > 1 \) to be **prime**.
5. the **Sieve of Eratosthenes** (described in a few sentences).

Be able to state and prove the following theorems (propositions, lemmas, etc.):

1. **The Division Algorithm**: Let \(a \) and \(b \) be integers with \(b > 0 \). Then there are unique integers \(q \) and \(r \) such that \(a = qb + r \) and \(0 \leq r < b \).
2. Suppose that \(a, b, \) and \(c \) are integers such that \(a \) divides \(b \) and \(b \) divides \(c \). Then \(a \) divides \(c \).
3. Suppose that \(a, b, \) and \(c \) are integers such that \(a \) divides \(b \) and \(a \) divides \(c \). Also suppose that \(m \) and \(n \) are any integers. Then \(a \) divides \(mb + nc \).
4. Let \(a \) and \(b \) be integers, not both zero. Then \(\gcd (a, b) \) is the smallest member of the set

\[
S = \{sa + tb \mid s \in \mathbb{Z}, t \in \mathbb{Z}, \text{ and } sa + tb > 0\}.
\]

Furthermore,

\[
S = \{k \cdot \gcd (a, b) \mid k \in \mathbb{N}\}.
\]

5. **Euclid’s Lemma**: Suppose that \(\gcd (a, b) = 1 \) and suppose that \(a \) divides \(bc \). Then \(a \) divides \(c \).
6. If $a, b, q,$ and r are integers (with a and b not both zero) and if $a = qb+r$, then $\gcd(a, b) = \gcd(b, r)$.

7. Let a and b be integers (not both zero). Then every common divisor of a and b divides $\gcd(a, b)$.

8. Let a and b be two non–zero integers. Then $\text{lcm}(a, b)$ divides every common multiple of a and b.

9. The **Fundamental Theorem of Arithmetic** (on page 28 of textbook). You just need to be able to state this theorem – not prove it.

10. There is no largest prime number.

 Be able to apply **Euclid’s Algorithm** to find $\gcd(a, b)$.
 Be able to find all (integer) solutions, (x, y), of **Diophantine Equations** of the form $ax + by = c$.
 Be able to solve problems and prove facts of the type encountered in the **homework problems**.