Instructions. Please be detailed in your solutions and proofs. The harder that I have to work to try to interpret what you are trying to say, the less partial credit you will get.

1. Write clear definitions of the following terms.

(a) Let A be a non–empty set. Define what is meant by a relation, R, on the set A.

Answer: A relation on A is a subset of $A \times A$.

(b) Let A be a non–empty set. Define what is meant by an equivalence relation, R, on the set A.

Answer: An equivalence relation on A is a relation, R, on A such that
1. R is reflexive (meaning that $(x, x) \in R$ for all $x \in A$)
2. R is symmetric (meaning that if $(x, y) \in R$, then $(y, x) \in R$)
3. R is transitive (meaning that if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$).

(c) Suppose that A is a set of objects endowed with two binary operations called addition (and denoted by “+”) and multiplication (denoted by “∗”). Let $R = \{+, +, ∗\}$. Under what conditions is R said to be a ring?

Answer: R is said to be a ring if the following properties are satisfied:
1. The associative laws of addition and multiplication hold. That is, for any elements $a, b,$ and $c \in A$, we have $a + (b + c) = (a + b) + c$ and $a (bc) = (ab) c$.
2. The commutative law of addition holds. That is, for any elements a and $b \in C$, we have $a + b = b + a$.
3. An additive identity exists. That is, there exists an element $0 \in A$ such that $a + 0 = a$ for $a \in A$.
4. Every element has an additive inverse. That is, for each $a \in A$, there is an element $−a \in A$ such that $a + (−a) = 0$.
5. The left and right distributive properties holds. That is, for any elements $a, b,$ and $c \in A$, we have $a (b + c) = a b + a c$ and $(b + c) a = b a + c a$.

(d) Suppose that R is a ring and suppose that a is an element of R such that $a \neq 0$. What does it mean for a to be a zero divisor?

Answer: a is said to be a zero divisor if there exists an element $b \in R$ such that $b \neq 0$ and either $a \cdot b = 0$ or $b \cdot a = 0$.

(e) Suppose that R is a ring with unity and suppose that a is an element of R. What does it mean for a to be a unit?

Answer: a is said to be a unit if there exists an element $b \in R$ such that $a \cdot b = b \cdot a = 1$.

2. Suppose that R is a ring with unity. Prove that no element of R can be both a zero divisor and a unit.
3. Suppose that m and n are positive integers and suppose that x_0 is an integer. Prove that
\[
[x_0]_m \cap [x_0]_n = [x_0]_{\text{lcm}(m,n)}.
\]

Proof: Let $x \in [x_0]_m \cap [x_0]_n$. Then $x \equiv x_0 \pmod m$ meaning that $x = x_0 + ms$ for some integer s and also $x_0 \equiv x_0 \pmod n$ meaning that $x = x_0 + nt$ for some integer t. This implies that $x-x_0 = ms = nt$ and hence that $x-x_0$ is a common multiple of m and n. Since lcm (m,n) divides any common multiple of m and n, we conclude that lcm (m,n) divides $x-x_0$. This means that there exists an integer p such that $x-x_0 = p\text{lcm} (m,n)$ or, in other words, such that $x = x_0 + p\text{lcm} (m,n)$. Therefore $x \in [x_0]_{\text{lcm}(m,n)}$. We have now proved that
\[
[x_0]_m \cap [x_0]_n \subseteq [x_0]_{\text{lcm}(m,n)}.
\]

Next, suppose that $x \in [x_0]_{\text{lcm}(m,n)}$. Then $x = x_0 + p\text{lcm} (m,n)$ for some integer p. Since lcm (m,n) is a multiple of m, we know that there exists an integer r such that lcm $(m,n) = rm$. Likewise, since lcm (m,n) is a multiple of n, we know that there exists an integer q such that lcm $(m,n) = qn$. Therefore $x = x_0 + prn$, meaning that $x \in [x_0]_m$, and $x = x_0 + pqn$, meaning that $x \in [x_0]_n$. We conclude that $x \in [x_0]_m \cap [x_0]_n$. We have now proved that
\[
[x_0]_{\text{lcm}(m,n)} \subseteq [x_0]_m \cap [x_0]_n.
\]

This completes the proof.

4. Find the solution set of the system of congruence equations
\[
\begin{align*}
x & \equiv 7 \pmod 4 \\
x & \equiv 6 \pmod 9.
\end{align*}
\]

(You must express this solution set as a single congruence class.)

What is the smallest positive value of x that satisfies this system?

Solution: By the Chinese Remainder Theorem, since gcd $(4,9) = 1$, we know that the solution set of this system of congruence equations is some congruence class modulo $4 \cdot 9 = 36$. The solution set of $x \equiv 7 \pmod 4$ is $[7]_4$ and the solution set of $x \equiv 6 \pmod 9$ is $[6]_9$. The solution set of the system is $[7]_4 \cap [6]_9$. To express this as a single congruence class, we must find a number x_0 such that $x_0 \equiv 7+4s$ for some integer s and $x_0 \equiv 6+9t$ for some integer t. This leads us to solving the Diophantine equation $9t - 4s = 1$ for which it is easily seen that $(s,t) = (2,1)$ is a solution. Thus we can take $x_0 = 15$. The solution set of this system of congruence equations is $[15]_{36}$. The smallest positive solution is $x = 15$.

2
5. List the zero divisors in \(Z_{12} \) and also list the units in \(Z_{12} \). Find the multiplicative inverse of each of the units in \(Z_{12} \).

Answer: The zero divisors in \(Z_{12} \) are \(2, 3, 4, 6, 8, 9, \) and \(10 \). The units are \(1, 5, 7, \) and \(11 \). The multiplicative inverse of \(1 \) is \(1 \) (because \(1 \cdot 1 = 1 \)). The multiplicative inverse of \(5 \) is \(5 \) (because \(5 \cdot 5 = 1 \)). The multiplicative inverse of \(7 \) is \(7 \) (because \(7 \cdot 7 = 1 \)). The multiplicative inverse of \(11 \) is \(11 \) (because \(11 \cdot 11 = 1 \)). Note that \(2 \cdot 6 = 0, 3 \cdot 4 = 0, 6 \cdot 8 = 0, 4 \cdot 9 = 0, \) and \(6 \cdot 10 = 0 \).

6. Let \(i \) be defined as usual (a number such that \(i^2 = -1 \)) and let \(Z_2[i] \) be the ring

\[Z_2[i] = \{a + bi \mid a \in Z_2 \text{ and } b \in Z_2\} \]

(a) List all of the elements of \(Z_2[i] \).

Answer: The elements of \(Z_2 \) are \(0 \) and \(1 \) so the elements of \(Z_2[i] \) are \(0, i, 1, \) and \(1+i \).

(b) Construct addition and multiplication tables for \(Z_2[i] \).

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>(i)</th>
<th>(1+i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(i)</td>
<td>(1+i)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(1+i)</td>
<td>(i)</td>
</tr>
<tr>
<td>(i)</td>
<td>(i)</td>
<td>(1+i)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(1+i)</td>
<td>(1+i)</td>
<td>(i)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>1</td>
<td>(i)</td>
<td>(1+i)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(i)</td>
<td>(1+i)</td>
</tr>
<tr>
<td>(i)</td>
<td>0</td>
<td>(i)</td>
<td>1</td>
<td>(1+i)</td>
</tr>
<tr>
<td>(1+i)</td>
<td>0</td>
<td>1</td>
<td>(1+i)</td>
<td>0</td>
</tr>
</tbody>
</table>

(c) Is \(Z_2[i] \) an integral domain? Explain why or why not.

Answer: \(Z_2[i] \) is not an integral domain because it contains a zero divisor \((1+i) \).

(d) Is \(Z_2[i] \) a field? Explain why or why not.

Answer: \(Z_2[i] \) is not a field because it is not an integral domain.

(a) Let \(z \) be the complex number

\[z = \frac{-3\sqrt{3}}{2} + \frac{3}{2}i. \]

Compute \(z^3 \) directly (without using de Moivre’s formula). Show your calculation in detail.

Solution: First note that

\[z = \frac{-3}{2} \left(\sqrt{3} - i \right) \]

so

\[z^2 = \frac{9}{4} \left(\sqrt{3} - i \right)^2 \]

\[= \frac{9}{4} \left(3 - 2\sqrt{3}i - 1 \right) \]

\[= \frac{9}{4} \left(2 - 2\sqrt{3}i \right) \]

\[= \frac{9}{2} \left(1 - \sqrt{3}i \right) \]
so

\[z^3 = z^2 \cdot z \]
\[= \frac{9}{2} \left(1 - \sqrt{3}i \right) \cdot \left(\frac{-3}{2} \right) \left(\sqrt{3} - i \right) \]
\[= -\frac{27}{4} \left(\sqrt{3} - i - 3i - \sqrt{3} \right) \]
\[= -27i \]

(b) Write \(z \) in the polar form

\[z = |z| \left(\cos (\theta) + \sin (\theta) i \right) \]

(where \(|z| \) is the modulus of \(z \) and \(\theta \) is some argument of \(z \)) and then compute \(z^3 \) by using de Moivre’s formula.

Solution: Since

\[|z| = \sqrt{\left(\frac{-3\sqrt{3}}{2} \right)^2 + \left(\frac{3}{2} \right)^2} = 3, \]

we see that

\[z = 3 \left(\frac{-\sqrt{3}}{2} + \frac{1}{2} i \right) = 3 \left(\cos (150^\circ) + \sin (150^\circ) i \right). \]

By de Moivre’s formula,

\[z^3 = 3^3 \left(\cos (450^\circ) + \sin (450^\circ) i \right) \]
\[= 27 \left(0 + i \right) \]
\[= 27i. \]

(c) Find all three cube roots of the number 27i. Write each answer in the standard form \(a + bi \). (Be detailed in your explanation of this. Include a picture that shows the location of these three cube roots in the complex plane.)

Solution: Since

\[27i = 27 \left(0 + i \right) = 27 \left(\cos (90^\circ) + \sin (90^\circ) i \right), \]

the cube roots of \(z \) are

\[z_1 = 3 \left(\cos \left(\frac{90^\circ + 360^\circ \cdot 0}{3} \right) + \sin \left(\frac{90^\circ + 360^\circ \cdot 0}{3} \right) i \right) \]
\[= 3 \left(\cos (30^\circ) + \sin (30^\circ) i \right) \]
\[= \frac{3\sqrt{3}}{2} + \frac{\sqrt{3}}{2} i, \]

\[z_2 = 3 \left(\cos \left(\frac{90^\circ + 360^\circ \cdot 1}{3} \right) + \sin \left(\frac{90^\circ + 360^\circ \cdot 1}{3} \right) i \right) \]
\[= 3 \left(\cos (150^\circ) + \sin (150^\circ) i \right) \]
\[= \frac{-3\sqrt{3}}{2} + \frac{3}{2} i, \]
and

\[z_3 = 3 \left(\cos \left(\frac{90^\circ + 360^\circ \cdot 2}{3} \right) + \sin \left(\frac{90^\circ + 360^\circ \cdot 2}{3} \right) i \right) \]

\[= 3 \left(\cos (270^\circ) + \sin (270^\circ) i \right) \]

\[= -3i. \]