1. Write clear definitions of the following terms. (This question counts as two questions in the grading of this exam.)

 (a) Suppose that a and b are integers with $b \neq 0$. What does it mean for a to be divisible by b?
 Answer: a is divisible by b if there exists an integer, t, such that $a = bt$.

 (b) Suppose that a and b are integers, not both zero. Define what is meant by the greatest common divisor of a and b.
 Answer: The greatest common divisor of a and b, denoted by $\gcd(a, b)$, is the largest integer that divides both a and b.

 (c) What do we mean when we say that two integers, a and b, are relatively prime?
 Answer: To say that a and b are relatively prime is to say that $\gcd(a, b) = 1$.

 (d) Suppose that p is an integer with $p > 1$. What do we mean when we say that p is a prime number?
 Answer: p is said to be a prime number if the only positive divisors of p are 1 and p. (Using the notation that we introduced in class, p is said to be prime if $D(p) = \{1, p\}$.)

2. State (but do not prove) the Division Algorithm theorem. I will get you started: “Let a and b be integers with $b > 0$.”

 Answer: Let a and b be integers with $b > 0$. Then there are unique integers, q and r, such that $a = qb + r$ and $0 \leq r < b$.

3. Suppose that a and b are (given) integers with $b > 0$ and consider the set

$$S = \{a - bt \mid t \in \mathbb{Z} \text{ and } a - bt > 0\}.$$

Use the Well–Ordering Principle to explain why S must have a smallest member.

Explanation: Since, for any integer t, $a - bt$ is an integer and the definition of the set S requires that $a - bt > 0$, we see that $S \subseteq \mathbb{N}$. We will now explain why the set S must not be the empty set by considering two possible cases: If $a > 0$, then the number $a - b(0) = a$ is positive and thus $a \in S$. If $a \leq 0$, then the number

$$x = a - b(a - 1) = b + a(1 - b)$$

is positive because $b > 0$, $a \leq 0$, and $1 - b \leq 0$ and hence $x \in S$. Thus we see that $S \neq \emptyset$. By the Well–Ordering Principle, S must have a smallest member.
4. Let \(a, b, \) and \(c \) be integers with \(a \neq 0 \) and \(b \neq 0 \) and suppose that \(a \) divides \(b \) and also that \(a \) divides \(c \). Prove that if \(m \) and \(n \) are any integers, then \(a \) divides \(mb + nc \).

Proof: See notes.

5. Prove *Euclid’s Lemma*: If \(a, b, \) and \(c \) are integers with \(\gcd (a, b) = 1 \) and \(a \) divides \(bc \), then \(a \) divides \(c \).

6. Use Euclid’s Algorithm to show that \(\gcd (491, 286) = 1 \).

Solution:

\[
\begin{align*}
491 &= 1(286) + 205 \\
286 &= 1(205) + 81 \\
205 &= 2(81) + 43 \\
81 &= 1(43) + 38 \\
43 &= 1(38) + 5 \\
38 &= 7(5) + 3 \\
5 &= 1(3) + 2 \\
3 &= 1(2) + 1
\end{align*}
\]

from which we conclude that \(\gcd (491, 286) = 1 \).

7. Consider the Diophantine equation

\[491x + 286y = 4.\]

(a) Based on information from problem 5, how do you know that this Diophantine equation has a solution?

(b) Use the work you did in problem 5 to find a solution of this Diophantine equation. (Include gory details.)

(c) Find all solutions of this Diophantine equation.

Solution: We know that a Diophantine equation, \(ax + by = c \), has a solution if and only if \(c \) is a multiple of \(\gcd (a, b) \). Since \(\gcd (491, 286) = 1 \) and since 4 is a multiple of 1, we can conclude that the above Diophantine equation has a solution (and hence has infinitely many solutions). We first find a solution of the Diophantine equation
491x + 286y = 1 by working the Euclidean Algorithm in reverse:

\[
1 = 3 - 1 (2) \\
= 3 - 1 (5 - 1 (3)) \\
= -1 (5) + 2 (3) \\
= -1 (5) + 2 (38 - 7 (5)) \\
= 2 (38) - 15 (5) \\
= 2 (38) - 15 (43 - 1 (38)) \\
= -15 (43) + 17 (38) \\
= -15 (43) + 17 (81 - 1 (43)) \\
= 17 (81) - 32 (43) \\
= 17 (81) - 32 (205 - 2 (81)) \\
= -32 (205) + 81 (81) \\
= -32 (205) + 81 (286 - 1 (205)) \\
= 81 (286) - 113 (205) \\
= 81 (286) - 113 (491 - 1 (286)) \\
= -113 (491) + 194 (286).
\]

This shows that \((x, y) = (-113, 194)\) is a solution of the Diophantine equation \(491x + 286y = 1\). In addition, we see that

\[
(4) (-113) (491) + (4) (194) (286) = 4 (1)
\]

and thus \((x, y) = (-452, 776)\) is a solution of the Diophantine equation

\[491x + 286y = 4.\]

All solutions of this equation are given by

\[(x, y) = (-452 + 286t, 776 - 491t)\]

where \(t\) can be any integer.

8. Prove that there is no largest prime number.

Proof: See notes.

9. Suppose that \(a_1 = 2\) and suppose that

\[a_{n+1} = \frac{1}{2} (a_n + 6)\]

for all integers \(n \geq 1\). Use the Principle of Induction to prove that \(a_n < 6\) for all integers \(n \geq 1\).

Proof: The proposition that we want to prove for all \(n \geq 1\) is

\[P(n): a_n < 6.\]
First observe that $a_1 = 2 < 6$ which means that statement $P(1)$ is true.

Now, if we assume that statement $P(n)$ is true (that is we assume that $a_n < 6$), then we obtain

$$a_{n+1} = \frac{1}{2} (a_n + 6) < \frac{1}{2} (6 + 6) = 6.$$

Thus the truth of statement $P(n)$ implies the truth of statement $P(n+1)$. By the Induction Principle, we can conclude that statement $P(n)$ is true for all integers $n \geq 1$.