1. Factor the polynomial
 \[a(x) = 3x^3 + 4x^2 + 3 \]
as completely as possible in \(\mathbb{Z}_5 \). Show all work.

2. Explain why each of the following polynomials is irreducible in \(\mathbb{Q}[x] \).
 a. \(a(x) = x^2 - 2 \)
 b. \(a(x) = 3x^3 + 4x^2 + 3 \)
 c. \(a(x) = 3x^5 + 7x^4 - 70x^3 - 21x^2 + 63x - 63 \)
 d. \(a(x) = x^4 + 1 \)

3. Suppose that \(E \) is a field and \(F \) is a subfield of \(E \) and \(c \in E \). Define
 \[J_c = \{ a(x) \in F[x] \mid a(c) = 0 \} \]
 Prove that \(J \) is an ideal in \(F[x] \).

4. Suppose that \(E \) is a field and that \(F \) is a subfield of \(E \) and \(c \in E \). Define what it means for \(c \) to be algebraic over \(F \).

5. Show that each of the following numbers is algebraic over \(\mathbb{Q} \). (Here we are taking \(E = \mathbb{C} \) and \(F = \mathbb{Q} \).)
 a. \(\frac{2}{3} + i \)
 b. \(\sqrt{2} + \sqrt{3} \)
 c. \(\sqrt{1 + \sqrt{1 + \sqrt{2}}} \).

6. Suppose that \(E \) is a field and that \(F \) is a subfield of \(E \) and \(c \in E \) with \(c \neq 0 \). Prove that if \(c \) is algebraic over \(F \) then \(c^{-1} \) is also algebraic over \(F \).

7. Find a basis for \(\mathbb{Q}(\sqrt{5}, i) \) over \(\mathbb{Q} \) and describe the elements of \(\mathbb{Q}(\sqrt{5}, i) \).
 (Note: The first step is to find the minimum polynomial of \(\sqrt{5} i \) over \(\mathbb{Q} \). It is a bit of a painstaking exercise to prove that this polynomial is irreducible so you don’t have to do this. Just find the polynomial and use the fact that it is of degree 6 to continue the problem.)

8. Find a basis for \(\mathbb{Q}(\sqrt{5}, i) \) over \(\mathbb{Q} \) and describe the elements of \(\mathbb{Q}(\sqrt{5}, i) \).
 Comparing your results to the results of question 6, what do you observe?

9. a. Explain why the polynomial \(p(x) = x^3 + x^2 + 2x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \).
 b. Explain how you can use the fact from part a to construct a field that contains exactly 27 elements. (Do not actually construct the field. Just explain in some detail how it would be done using the Basic Field Extension Theorem.)