Fields

August 23, 2000

Definition 1 A field, \mathcal{F}, is a quintuple $(F, +, \cdot, 0, 1)$ where F is a nonempty set (called the underlying set of \mathcal{F}), $+$ is a binary operation on F called addition, \cdot is a binary operation on F called multiplication, 0 is an element of F called the additive identity (or zero) of \mathcal{F}, and 1 is an element of F (with $1 \neq 0$) called the multiplicative identity (or one) of \mathcal{F} such that the following properties hold:

Commutative Properties For all x and $y \in F$, $x + y = y + x$ and $x \cdot y = y \cdot x$.

Associative Properties For all x, y, and $z \in F$, $x + (y + z) = (x + y) + z$ and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

Identity Properties For all $x \in F$, $x + 0 = x$ and $x \cdot 1 = x$.

Inverse Properties For all $x \in F$, there exists $-x \in F$ such that $x + (-x) = 0$, and for all $x \in F$ with $x \neq 0$, there exists $x^{-1} \in F$ such that $x \cdot x^{-1} = 1$.

Distributive Property For all x, y, and $z \in F$, $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.

Remark 2 Usually, once the operations $(+, \cdot)$ and the additive and multiplicative identities $(0, 1)$ of a field have been defined, we just refer to the field as F. Strictly speaking, the field is really $\mathcal{F} = (F, +, \cdot, 0, 1)$ but we save a lot of space by just saying “the field F”.

Remark 3 The operation of multiplication, \cdot, is sometimes described simply by juxtaposition of the elements of F being multiplied. That is, instead of writing $x \cdot y$, we just write xy.

1
Example 4 The field \(Z_3 \) is the field whose underlying set has three elements \(\{0, 1, 2\} \) where the symbols 0, 1, 2 should not be thought of as the usual integers because addition and multiplication in \(Z_3 \) are defined as given in the following tables

\[
\begin{array}{c|cc}
+ & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array}
\quad
\begin{array}{c|ccc}
\cdot & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]

Note that addition and multiplication in \(Z_3 \) have been defined such that

\[x + y = \text{the remainder when “the usual } x + y \text{” is divided by 3} \]

and

\[x \cdot y = \text{the remainder when “the usual } x \cdot y \text{” is divided by 3}. \]

For example, if we do “the usual” addition 1 + 2, we get the answer 3 and

\[\frac{3}{3} = 1 \text{ remainder 0} \]

so, in \(Z_3 \), we define \(1 + 2 = 0 \).

Likewise, if we do “the usual” multiplication \(1 \cdot 2 \), we get the answer 2 and

\[\frac{2}{3} = 0 \text{ remainder 2} \]

so, in \(Z_3 \), we define \(1 \cdot 2 = 2 \).

Exercise 5 Prove that \(Z_3 \) is a field. What are the additive and multiplicative identities of \(Z_3 \)? For each \(x \in Z_3 \), what is \(-x\) and, for each non-zero \(x \), what is \(x^{-1} \)?

Exercise 6 Mimic the construction of \(Z_3 \) to construct the set \(Z_4 \) which has four elements \(\{0, 1, 2, 3\} \). Make addition and multiplication tables for \(Z_4 \). Is \(Z_4 \) a field? What about \(Z_5 \)?

The following theorem establishes that we can “cancel” when doing addition or multiplication in a field.
Theorem 7 (Cancellation Properties) If F is a field, x, y, and $z \in F$, and $x + z = y + z$, then $x = y$. Also, if $z \neq 0$ and $x \cdot z = y \cdot z$, then $x = y$.

Proof. Supposing that $x + z = y + z$, we obtain

$$(x + z) + (-z) = (y + z) + (-z).$$

Using the associative property of addition, we then obtain

$$x + (z + (-z)) = y + (z + (-z)).$$

Using the fact that $z + (-z) = 0$ (the additive inverse property), we obtain

$$x + 0 = y + 0.$$

We now use the fact that $x + 0 = x$ and $y + 0 = y$ (additive identity property) to conclude that $x = y$.

We leave the proof of the multiplicative cancellation property as homework. ■

A very useful fact that follows from the additive cancellation property and the field axioms is given in the following theorem.

Theorem 8 If F is a field and $x \in F$, then $x \cdot 0 = 0$.

Proof. Let $x \in F$ be given. Our line of reasoning is as follows:

$$0 + 0 = 0 \quad \text{(additive identity property)}$$
$$\implies x \cdot (0 + 0) = x \cdot 0 \quad \text{(multiplication by x)}$$
$$\implies (x \cdot 0) + (x \cdot 0) = x \cdot 0 \quad \text{(distributive property)}$$

but we also know that $(x \cdot 0) + 0 = (x \cdot 0)$ by the additive identity property so we conclude that

$$(x \cdot 0) + (x \cdot 0) = (x \cdot 0) + 0$$

or, by the commutative property of addition,

$$(x \cdot 0) + (x \cdot 0) = 0 + (x \cdot 0).$$

Finally, we apply the cancellation law of addition (Theorem 7) to obtain $x \cdot 0 = 0$. ■
Exercise 9 Prove that if F is a field, x and $y \in F$, and $x + y = x$, then $y = 0$.

Exercise 10 Prove that if F is a field, x and $y \in F$ with $x \neq 0$, and $xy = x$, then $y = 1$.

Exercise 11 Prove that if F is a field, then the additive inverse of any element $x \in F$ is unique. In other words, prove that if F is a field, $x \in F$, $y \in F$, and $x + y = 0$, then $y = -x$.

Exercise 12 Prove that if F is a field, then the multiplicative inverse of any non-zero element $x \in F$ is unique. In other words, prove that if F is a field, $x \in F$ with $x \neq 0$, $y \in F$, and $x \cdot y = 1$, then $y = x^{-1}$.

Exercise 13 Use the results of the previous two exercises to prove that if F is a field, then $-0 = 0$ and $1^{-1} = 1$.

In what follows, we let R denote the set of all real numbers with addition and multiplication defined in the usual way (the way you always learned!). For example, $4 + 5 = 9$, $(-3) \cdot 6 = -18$, $(4/5) + (1/3) = 17/15$, $(2 + \sqrt{2}) \cdot (3 - 4\sqrt{3}) = 6 - 8\sqrt{3} + 3\sqrt{2} - 4\sqrt{6}$, etc. In this case, we know (from previous experience) that the commutative, associative, and distributive properties hold and it is easy to see that R is a field.

For the remainder, we take R to be the “universal field” and we define the subsets, N, Z, and Q, of R as follows:

$N =$ the set of all natural numbers $= \{1, 2, 3, \ldots \}$

$Z =$ the set of all integers $= \{0, 1, -1, 2, -2, 3, \ldots \}$

$Q =$ the set of rational numbers $= \left\{ \frac{a}{b} \mid a \in Z, \ b \in Z, \text{ and } b \neq 0 \right\}$

Clearly, $N \subseteq Z \subseteq Q \subseteq R$.

Exercise 14 Explain why N is not a field and explain why Z is not a field.

Exercise 15 Prove that Q is a field.

Exercise 16 Prove that if F is a field with $F \subseteq R$ (in other words, if F is a subfield of R), then $Q \subseteq F$. This establishes the fact that Q is the “smallest” subfield of R.

4
Does R have any proper subfields that are bigger than Q? The answer is yes!

Exercise 17 Define

$$F_{\sqrt{2}} = \left\{ p + q\sqrt{2} \mid p \in Q, q \in Q \right\}.$$

Prove that F is a field and that $Q \subset F_{\sqrt{2}} \subset R$.