Approximation by Polynomials

S. F. Ellermeyer

December 4, 2000

1 Second and Higher Derivatives

If \(f : (a, b) \rightarrow R \) is differentiable at all points \(x \in (a, b) \) and \(x_0 \in (a, b) \), then it makes sense to inquire about the existence of the limit

\[
\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}
\]

If this limit exists, then \(f' \) is differentiable at \(x_0 \) and

\[
(f')'(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0}.
\]

We call \((f')'(x_0)\) the second derivative of \(f \) at \(x_0 \) and denote it by \(f''(x_0) \) or by \(f^{(2)}(x_0) \).

Similarly, if \(f' \) is differentiable at all points \(x \in (a, b) \) (in which case we say that \(f \) is twice differentiable at all points \(x \in (a, b) \)), then it makes sense to inquire about the existence of the limit

\[
\lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0}.
\]

If this limit exists, then \(f'' \) is differentiable at \(x_0 \) and

\[
(f'')'(x_0) = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{x - x_0}.
\]

We call \((f'')'(x_0)\) the third derivative of \(f \) at \(x_0 \) and denote it by \(f'''(x_0) \) or by \(f^{(3)}(x_0) \).
These definitions can be extended inductively to define higher order derivatives. In general, if \(f \) is \(n \) times differentiable at all points \(x \in (a, b) \) and if

\[
\lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{x - x_0}
\]

exists, then we say that \(f \) is \(n + 1 \) times differentiable at \(x_0 \) and we call

\[
f^{(n+1)}(x_0) = \lim_{x \to x_0} \frac{f^{(n)}(x) - f^{(n)}(x_0)}{x - x_0}
\]

the \((n + 1)\)st derivative of \(f \) at \(x_0 \).

Example 1 Consider the function \(f(x) = 8x^3 - 36x^2 + 50x - 20 \). Its first and higher derivatives at any point \(x \in R \) are

\[
\begin{align*}
 f^{(1)}(x) &= 24x^2 - 72x + 50 \\
 f^{(2)}(x) &= 48x - 72 \\
 f^{(3)}(x) &= 48 \\
 f^{(4)}(x) &= 0
\end{align*}
\]

and in fact \(f^{(m)}(x) = 0 \) for all \(n \geq 4 \).

Example 2 For the function \(f(x) = e^x \), we have \(f^{(n)}(x) = e^x \) for all \(n \geq 1 \).

2 Quadratic and Higher Order Approximations

A fact that we have found to be very useful is that if \(f : (a, b) \to R \), \(x_0 \in (a, b) \), and \(f \) is differentiable at \(x_0 \), then \(f \) is approximately equal to a linear function for values of \(x \) near \(x_0 \). More specifically, there exists a function \(\alpha_1 : (a, b) \to R \) such that \(\lim_{x \to x_0} \alpha_1(x) = \alpha_1(x_0) = 0 \) and such that

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + \alpha_1(x)(x - x_0) \quad \text{for all } x \in (a, b).
\]
Solving equation (1) for \(\alpha_1 (x) \) and using the fact that \(\alpha_1 (x_0) = 0 \), we obtain
\[
\alpha_1 (x) = \begin{cases}
\frac{f(x) - f(x_0) - f'(x_0)(x-x_0)}{x-x_0} & \text{if } x \neq x_0 \\
0 & \text{if } x = x_0
\end{cases}
\]

Now, let us suppose that \(f \) is differentiable at all points \(x \in (a, b) \) and that \(f \) is twice differentiable at \(x_0 \). We may then apply L’Hospital’s Rule to obtain
\[
\lim_{x \to x_0} \frac{\alpha_1 (x) - \alpha_1 (x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x-x_0)}{(x-x_0)^2} = \lim_{x \to x_0} \frac{f''(x) - f''(x_0)}{2(x-x_0)} = \frac{1}{2} f'''(x_0)
\]

which shows that \(\alpha_1 \) is differentiable at \(x_0 \) and that \(\alpha_1' (x_0) = f'''(x_0) / 2 \). Hence, there exists a function \(\alpha_2 : (a, b) \to \mathbb{R} \) such that \(\lim_{x \to x_0} \alpha_2 (x) = \alpha_2 (x_0) = 0 \) and such that
\[
\alpha_1 (x) = \frac{f'''(x_0)}{2!} (x-x_0) + \alpha_2 (x) (x-x_0) \text{ for all } x \in (a, b).
\]

(We have written \(2! \) instead of 2 in anticipation of a pattern that we will see develop.) Substitution into equation (1) gives
\[
f(x) = f(x_0) + f'(x_0) (x-x_0) + \frac{f'''(x_0)}{2!} (x-x_0)^2 + \alpha_2 (x) (x-x_0)^2 \text{ for all } x \in (a, b).
\]

This shows that \(f \) is approximately equal to a quadratic function for values of \(x \) near \(x_0 \).

Continuing with this line of reasoning, suppose that \(f \) is twice differentiable at all points \(x \in (a, b) \) and three times differentiable at \(x_0 \). Solving for \(\alpha_2 (x) \) and using the fact that \(\alpha_2 (x_0) = 0 \), we obtain
\[
\alpha_2 (x) = \begin{cases}
\frac{f(x) - f(x_0) - f'(x_0)(x-x_0) - f''(x_0)(x-x_0)^2}{(x-x_0)^2} & \text{if } x \neq x_0 \\
0 & \text{if } x = x_0
\end{cases}
\]
Using L’Hospital’s Rule, we obtain

\[
\lim_{x \to x_0} \frac{\alpha_2 (x) - \alpha_2 (x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f (x) - f (x_0) - f' (x_0) (x - x_0) - \frac{f'' (x_0)}{2!} (x - x_0)^2}{(x - x_0)^3} \\
= \lim_{x \to x_0} \frac{f' (x) - f' (x_0) - f'' (x_0) (x - x_0)}{3 (x - x_0)^2} \\
= \lim_{x \to x_0} \frac{f'' (x) - f'' (x_0)}{3! (x - x_0)} \\
= \frac{f'' (x_0)}{3!}
\]

which shows that \(\alpha_2 \) is differentiable at \(x_0 \) and that \(\alpha'_2 (x_0) = f'' (x_0) / 3! \). Hence, there exists a function \(\alpha_3 : (a, b) \to R \) such that \(\lim_{x \to x_0} \alpha_3 (x) = \alpha_3 (x_0) = 0 \) and such that

\[
\alpha_2 (x) = \frac{f'' (x_0)}{3!} (x - x_0) + \alpha_3 (x) (x - x_0) \text{ for all } x \in (a, b).
\]

Substitution into (2) gives

\[
f (x) = f (x_0) + \sum_{j=1}^{3} \frac{f^{(j)} (x_0)}{j!} (x - x_0)^j + \alpha_3 (x) (x - x_0)^3 \text{ for all } x \in (a, b).
\]

Hence, \(f \) is approximately equal to a polynomial of degree three for values of \(x \) close to \(x_0 \).

The following theorem extends these results to the general situation of approximating a function (locally) with a polynomial of any degree.

Theorem 3 Suppose that \(f : (a, b) \to R \) is \(n \) times differentiable at all points \(x \in (a, b) \). Also, suppose that \(x_0 \in (a, b) \) and that \(f \) is \(n + 1 \) times differentiable at \(x_0 \). Then there exists a function \(\alpha_{n+1} : (a, b) \to R \) such that \(\lim_{x \to x_0} \alpha_{n+1} (x) = \alpha_{n+1} (x_0) = 0 \) and such that for all \(x \in (a, b) \), we have

\[
f (x) = f (x_0) + \sum_{j=1}^{n+1} \frac{f^{(j)} (x_0)}{j!} (x - x_0)^j + \alpha_{n+1} (x) (x - x_0)^{n+1}.
\]
Proof. We have already proved (in the discussion preceding this theorem) that the statement of the theorem is true for \(n = 1 \). We will now show that the truth of the statement for \(n = k \) implies its truth for \(n = k + 1 \).

Assuming the statement to be true for \(n = k \), suppose that \(f \) is \(k+1 \) times differentiable at all points \(x \in (a, b) \) and that \(f \) is \(k + 2 \) times differentiable at \(x_0 \). Since the statement of the theorem is assumed to be true for \(n = k \), there exists a function \(\alpha_{k+1} : (a, b) \to R \) such that \(\lim_{x \to x_0} \alpha_{k+1} (x) = \alpha_{k+1} (x_0) = 0 \) and such that for all \(x \in (a, b) \), we have

\[
f (x) = f (x_0) + \sum_{j=1}^{k+1} \frac{f^{(j)} (x_0)}{j!} (x - x_0)^j + \alpha_{k+1} (x) (x - x_0)^{k+1} \quad \text{(3)}
\]

This gives us

\[
\alpha_{k+1} (x) = \begin{cases} \frac{f(x) - f(x_0) - \sum_{j=1}^{k+1} \frac{f^{(j)} (x_0)}{j!} (x - x_0)^j}{(x - x_0)^{k+1}} & \text{if } x \neq x_0 \\ 0 & \text{if } x = x_0 \end{cases}
\]

By applying L’Hospital’s Rule, we obtain

\[
\begin{align*}
\lim_{x \to x_0} \frac{\alpha_{k+1} (x) - \alpha_{k+1} (x_0)}{x - x_0} &= \lim_{x \to x_0} \frac{f (x) - f (x_0) - \sum_{j=1}^{k+1} \frac{f^{(j)} (x_0)}{j!} (x - x_0)^j}{(x - x_0)^{k+2}} \\
&= \lim_{x \to x_0} \frac{f' (x) - f' (x_0) - \sum_{j=2}^{k+1} \frac{f^{(j)} (x_0)}{(j-1)!} (x - x_0)^{j-1}}{(k + 2) (x - x_0)^{k+1}} \\
&= \lim_{x \to x_0} \frac{f'' (x) - f'' (x_0) - \sum_{j=3}^{k+1} \frac{f^{(j)} (x_0)}{(j-2)!} (x - x_0)^{j-2}}{(k + 2) (k + 1) (x - x_0)^k} \\
&\vdots \\
&= \lim_{x \to x_0} \frac{f^{(k)} (x) - f^{(k)} (x_0) - \sum_{j=k}^{k+1} \frac{f^{(j)} (x_0)}{(j-k)!} (x - x_0)^{j-k}}{(k + 2) (k + 1) \cdots (3) (x - x_0)^2} \\
&= \lim_{x \to x_0} \frac{f^{(k+1)} (x) - f^{(k+1)} (x_0)}{(k + 2)! (x - x_0)} \\
&= \frac{f^{(k+2)} (x_0)}{(k + 2)!}
\end{align*}
\]

which shows that \(\alpha_{k+1} \) is differentiable at \(x_0 \) and that \(\alpha'_{k+1} (x_0) = f^{(k+2)} (x_0) / (k + 2)! \).

Hence, there exists a function \(\alpha_{k+2} : (a, b) \to R \) such that \(\lim_{x \to x_0} \alpha_{k+2} (x) = \)
\(\alpha_{k+2} (x_0) = 0 \) and such that

\[
\alpha_{k+1} (x) = \frac{f^{(k+2)} (x_0)}{(k+2)!} (x - x_0) + \alpha_{k+2} (x) (x - x_0) \quad \text{for all } x \in (a, b).
\]

Substitution into equation (3) gives the desired result. ■

Example 4 The function \(f(x) = 8x^3 - 36x^2 + 50x - 20 \) has derivatives of all orders at all points in \((\infty, \infty)\). Suppose we want to approximate \(f \) with a third degree polynomial at the point \(x_0 = 1 \). By Theorem 3, there exists a function \(\alpha_3 \) with \(\lim_{x \to 1} \alpha_3 (x) = \alpha_3 (1) = 0 \) such that for all \(x \in (\infty, \infty) \),

\[
f(x) = f(1) + f'(1) (x - 1) + \frac{f''(1)}{2!} (x - 1)^2 + \frac{f'''(1)}{3!} (x - 1)^3 + \alpha_3 (x) (x - 1)^3.
\]

Since \(f(1) = 2, f'(1) = 2, f''(1) = -24, \) and \(f'''(1) = 48 \), we obtain

\[
f(x) = 2 + 2 (x - 1) - 12 (x - 1)^2 + 8 (x - 1)^3 + \alpha_3 (x) (x - 1)^3.
\]

Observe that

\[
2 + 2 (x - 1) - 12 (x - 1)^2 + 8 (x - 1)^3 = 8x^3 - 36x^2 + 50x - 20
\]

which shows us that in fact \(\alpha_3 (x) = 0 \) for all \(x \in (\infty, \infty) \). This is not too surprising because the function \(f \) is itself a polynomial of degree three so it is its own best approximation by a polynomial of degree three.

Example 5 Let us approximate the function \(f(x) = e^x \) with a polynomial of degree four near \(x_0 = 0 \). Since \(f^{(n)} (0) = 1 \) for all \(n \geq 1 \), we have

\[
f(x) = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 + \alpha_4 (x) x \quad \text{for all } x \in (\infty, \infty)
\]

where \(\alpha_4 \) is a function with

\[
\lim_{x \to 0} \alpha_4 (x) = \alpha_4 (0) = 0.
\]

The graphs of \(f \) and the polynomial \(Q(x) = 1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4 \) are shown in the figure below.
Exercise 6 Find (explicitly) the function α_4 of Example 5 and show by direct computation that $\lim_{x \to 0} \alpha_4 (x) = 0$.

Exercise 7 Find a polynomial of degree 4 that well-approximates $f(x) = \cos x$ near $x_0 = 0$. Graph f together with this polynomial near $x_0 = 0$.

3 Taylor’s Theorem

If $f : (a, b) \to R$ is n times differentiable at all points $x \in (a, b)$ and $n + 1$ times differentiable at $x_0 \in (a, b)$, then

$$f(x) = P_{n+1}(x) + \alpha_{n+1}(x)(x - x_0)^{n+1}$$

for all $x \in (a, b)$ where P_{n+1} is the polynomial function

$$P_{n+1}(x) = f(x_0) + \sum_{j=1}^{n+1} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j$$

and α_{n+1} is a function satisfying $\lim_{x \to x_0} \alpha_{n+1} (x) = \alpha_{n+1} (x_0) = 0$. If we define $R_{n+1} : (a, b) \to R$ by

$$R_{n+1}(x) = \alpha_{n+1}(x)(x - x_0)^{n+1},$$

then we can write

$$f(x) = P_{n+1}(x) + R_{n+1}(x).$$
For each integer \(n \geq 1 \), the function \(P_n \) is called the \(nth \) Taylor polynomial of \(f \) at \(x_0 \) and the function \(R_n \) is called the \(nth \) remainder function of \(f \) at \(x_0 \).

Since \(\lim_{x \to x_0} R_{n+1} (x) / (x - x_0)^{n+1} = 0 \), the values of \(R_{n+1} (x) \) approach 0 very rapidly as \(x \to x_0 \). Thus, it seems that the values of \(f(x) \) and \(P_{n+1} (x) \) should be very close when \(x \) is close to \(x_0 \). What do we mean by “close”? In order to be more precise about this, we need to have a better understanding of \(R_{n+1} (x) \). The theorem that gives us this understanding is Taylor’s Theorem named after the English mathematician Brook Taylor (1685-1731) but also discovered independently by Johann Bernoulli.

Theorem 8 (Taylor’s Theorem) Suppose that \(f : (a, b) \longrightarrow R \) is \(n+1 \) times differentiable at all points \(x \in (a, b) \) and suppose that \(x_0 \in (a, b) \). Then for any \(x \in (a, b) \) with \(x \neq x_0 \), there exists a point \(c \) that lies between \(x_0 \) and \(x \) such that

\[
f(x) = P_n (x) + \frac{f^{(n+1)} (c)}{(n+1)!} (x - x_0)^{n+1}.
\]

Proof. Let \(x \in (x_0, b) \). (The proof that follows is similar if we assume that \(x \in (a, x_0) \).) Since, in this proof, we will be working on the interval \([x_0, x]\), we will use \(t \) as an independent variable with \(x_0 \leq t \leq x \).

By Theorem 3, we have

\[
f(t) = P_{n+1} (t) + R_{n+1} (t) \text{ for all } t \in [x_0, x]
\]

Since we are assuming that \(f \) is \(n+1 \) times differentiable at all points \(t \in (a, b) \), then \(R_{n+1} \) is also \(n+1 \) times differentiable at all points \(t \in (a, b) \) (because \(R_{n+1} = f - P_{n+1} \)) and

\[
R_{n+1}^{(1)} (t) = f^{(1)} (t) - f^{(1)} (x_0) - \sum_{j=2}^{n+1} \frac{f^{(j)} (x_0)}{(j-1)!} (t - x_0)^{j-1}
\]

\[
R_{n+1}^{(2)} (t) = f^{(2)} (t) - f^{(2)} (x_0) - \sum_{j=3}^{n+1} \frac{f^{(j)} (x_0)}{(j-2)!} (t - x_0)^{j-2}
\]

\[
\vdots
\]

\[
R_{n+1}^{(n)} (t) = f^{(n)} (t) - f^{(n)} (x_0) - f^{(n+1)} (x_0) (t - x_0)
\]

\[
P_{n+1}^{(n+1)} (t) = f^{(n+1)} (t) - f^{(n+1)} (x_0)
\]

8
We now define the function $G : (a, b) \rightarrow R$ by

$$G(t) = (t - x_0)^{n+1}.$$

This derivatives of G of orders 1 through $n + 1$ are

$$G^{(1)}(t) = \frac{(n + 1)!}{n!} (t - x_0)^n$$

$$G^{(2)}(t) = \frac{(n + 1)!}{(n - 1)!} (t - x_0)^{n-1}$$

$$\vdots$$

$$G^{(n)}(t) = (n + 1)! (t - x_0)$$

$$G^{(n+1)}(t) = (n + 1)!$$

We will now apply the Cauchy Mean Value Theorem to the functions R_{n+1} and G on the interval $[x_0, x]$. Both R_{n+1} and G are differentiable at all points of $[x_0, x]$, $G(x_0) \neq G(x)$ (Why?), and R_{n+1} and G are not simultaneously zero at any point of (x_0, x) (Why?). Hence, by the Cauchy Mean Value Theorem, there exists a point $c_1 \in (x_0, x)$ such that

$$\frac{R_{n+1}(x)}{G(x)} = \frac{R_{n+1}(x) - R_{n+1}(x_0)}{G(x) - G(x_0)} = \frac{R_{n+1}^{(1)}(c_1)}{G^{(1)}(c_1)}.$$

Now note that $R_{n+1}^{(1)}$ and $G^{(1)}$ are both differentiable at all points of $[x_0, c_1]$, $G^{(1)}(x_0) \neq G^{(1)}(c_1)$, and $R_{n+1}^{(1)}$ and $G^{(1)}$ are never simultaneously zero in (x_0, c_1) so we can again apply the Cauchy Mean Value Theorem (to R_{n+1} and $G^{(1)}$ on $[x_0, c_1]$) to conclude that there exists a point $c_2 \in (x_0, c_1)$ such that

$$\frac{R_{n+1}(x)}{G(x)} = \frac{R_{n+1}^{(1)}(c_1) - R_{n+1}^{(1)}(x_0)}{G^{(1)}(c_1) - G^{(1)}(x_0)} = \frac{R_{n+1}^{(2)}(c_2)}{G^{(2)}(c_2)}.$$

Continuing in this fashion (applying the Cauchy Mean Value Theorem a total of $n + 1$ times), we find that there exists a point $c_{n+1} \in (x_0, x)$ such that

$$\frac{R_{n+1}(x)}{G(x)} = \frac{R_{n+1}^{(n+1)}(c_{n+1})}{G^{(n+1)}(c_{n+1})}.$$

9
This gives us

\[
R_{n+1}(x) = \frac{f^{(n+1)}(c_{n+1})}{(x-x_0)^{n+1}} - \frac{f^{(n+1)}(x_0)}{(n+1)!} (x-x_0)^{n+1}.
\]

or

\[
R_{n+1}(x) = \frac{f^{(n+1)}(c_{n+1})}{(n+1)!} (x-x_0)^{n+1}.
\]

Letting \(c = c_{n+1} \) and substituting into equation (4), we obtain

\[
f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}
\]

and the proof is complete. ■

Example 9 For \(f(x) = e^x \) and \(x_0 = 0 \), we have for any \(x \neq 0 \),

\[
f(x) = 1 + x + \frac{1}{2} x^2 + \frac{f^{(3)}(c)}{3!} x^3
\]

where \(c \) is some point between 0 and \(x \). Thus,

\[
e^x = 1 + x + \frac{1}{2} x^2 + \frac{e^c}{6} x^3.
\]

Suppose that we wish to get a numerical approximation the value of \(e^{1/2} \) (without using a calculator). We obtain

\[
e^{1/2} = 1 + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{6} \left(\frac{1}{2} \right)^3 e^c = \frac{78}{48} + \frac{1}{48} e^c
\]

where \(c \) lies between 0 and 1/2.

Since \(0 < c < 1/2 \) and \(f(x) = e^x \) is a monotone increasing function, we have \(e^0 < e^c < e^{1/2} \). This gives us

\[
\frac{1}{48} e^0 < \frac{1}{48} e^c < \frac{1}{48} e^{1/2}
\]

and

\[
\frac{78}{48} + \frac{1}{48} e^0 < \frac{78}{48} + \frac{1}{48} e^c < \frac{78}{48} + \frac{1}{48} e^{1/2}
\]

10
so

\[\frac{79}{48} < e^{1/2} < \frac{78}{48} + \frac{1}{48} e^{1/2} \]

Using

\[e^{1/2} < \frac{78}{48} + \frac{1}{48} e^{1/2} , \]

we obtain

\[e^{1/2} < \frac{78}{47} \]

which gives us an overall estimate of

\[\frac{79}{48} < e^{1/2} < \frac{78}{47} \]

This estimate is pretty good estimate because \(79/48 \approx 1.6458\) and \(78/47 \approx 1.6596\). If you compute \(e^{1/2}\) on a calculator, you will get 1.648721271.

Exercise 10 Use \(1 + 1 + \frac{1}{2!}(1)^2 + \frac{1}{3!}(1)^3\) to approximate \(e\) (without using a calculator) and then use Taylor’s Theorem to estimate how good your approximation is. Use a calculator to compute \(e\) and compare.

Exercise 11 For the function \(f(x) = \cos x\), use

\[f(0) + \sum_{j=1}^{4} \frac{f^{(j)}(0)}{j!} (x - 0)^j \]

to approximate \(\cos 1\) (without using a calculator) and then use Taylor’s Theorem to estimate how good your approximation is. Use a calculator to compute \(\cos 1\) and compare.

Exercise 12 Show that given any \(x \in (-\infty, \infty)\) and given any \(\varepsilon > 0\), there exists an integer \(n \geq 1\) such that \(|\cos x - P_n(x)| < \varepsilon\) (where \(P_n\) is the \(n\)th Taylor polynomial of \(f(x) = \cos x\) at \(x_0 = 0\)).

As a specific illustration, find \(n\) such that \(|\cos 10 - P_n(10)| < 0.00001\).

Exercise 13 For the function \(f : (-\infty, \infty) \rightarrow R\) defined by

\[f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} , \]

show that \(P_n(x) = 0\) for all \(x \in (-\infty, \infty)\) and for all \(n \geq 1\).