Uniform Continuity

S. F. Ellermeyer

November 1, 2000

1 Definition and Examples

Definition 1 For a function $f : D \rightarrow \mathbb{R}$, we say that f is uniformly continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(y)| < \varepsilon$ for all x and $y \in D$ with $|x - y| < \delta$.

Example 2 Let $D = [0; 4]$. The function $f : D \rightarrow \mathbb{R}$ defined by $f(x) = x^2$ is uniformly continuous.

To see that this is so, let $\varepsilon > 0$ be given and let $\delta = \varepsilon/8$. Then, if x and y are any two points in D with $|x - y| < \delta$, we have

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| < (4 + 4)\delta = 8\delta = \varepsilon/8 = \varepsilon.$$

Example 3 Let $D = [0; 1)$. The function $f : D \rightarrow \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous.

To show that f is not uniformly continuous, we must show that there exists $\varepsilon > 0$ such that given any $\delta > 0$ there exist x and y in D with $|x - y| < \delta$ but $|f(x) - f(y)| > \varepsilon$. (We will show that this is true using $\varepsilon = 2$.)

Let $\varepsilon = 2$ and let $\delta > 0$ be given. Then choose a positive integer n with $\frac{1}{n} < \delta$ and let $x = n + \frac{1}{n}$ and $y = n$. Then x and y are in D and

$$|x - y| = \frac{1}{n} < \delta.$$

Then

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y| = \left(2n + \frac{1}{n}\right)\frac{1}{n} = \frac{2n^2 + 1}{n^2} < \delta.$$
but
\[
\begin{align*}
\left| f(x) - f(y) \right| &= \left| x^2 - y^2 \right| \\
&= \left| x + y \right| \left| x - y \right| \\
&= \left(\frac{1}{n} \right) \frac{1}{n} \\
&= 2 + \frac{1}{n^2} > "
\end{align*}
\]

Exercise 4 Let \(a \) and \(b \) be real numbers with \(a < b \) and let \(D = [a; b] \). Show that the function \(f : D \rightarrow \mathbb{R} \) defined by \(f(x) = x^2 \) is uniformly continuous.

Exercise 5 Let \(D = (0; 1] \) and let \(f : D \rightarrow \mathbb{R} \) be the function defined by \(f(x) = \frac{1}{x} \). Show that \(f \) is not uniformly continuous.

2 Relating Continuity and Uniform Continuity

Note that uniform continuity of a function is a property that depends greatly on the domain of the function. For example, the functions in Examples 2 and 3 are both defined by the same rule, \(f(x) = x^2 \), but one is uniformly continuous and the other is not. Also, it is important to observe that a function \(f : D \rightarrow \mathbb{R} \) might be continuous at each point of \(D \) but not be uniformly continuous. However, if \(f : D \rightarrow \mathbb{R} \) is uniformly continuous, then \(f \) must be continuous at each point of \(D \). This result is given in the following theorem.

Theorem 6 If \(f : D \rightarrow \mathbb{R} \) is uniformly continuous, then \(f \) is continuous at each point of \(D \).

Proof. Let \(x_0 \) be a point in \(D \) and let \(" > 0 \) be given. Since \(f \) is uniformly continuous, there exists \(\varepsilon > 0 \) such that if \(x \) and \(y \) are any two points in \(D \) with \(\left| x - y \right| < \varepsilon \), then \(\left| f(x) - f(y) \right| < " \). In particular, since \(x_0 \in D \), then if \(x \) is any point in \(D \) with \(\left| x - x_0 \right| < \varepsilon \), then \(\left| f(x) - f(x_0) \right| < " \). This shows that \(f \) is continuous at \(x_0 \). Since \(x_0 \) was chosen arbitrarily form \(D \), \(f \) is continuous at each point of \(D \). ■
As was remarked earlier, the converse of Theorem 6 is not true in general. However, if \(D = [a; b] \) (a closed interval), then the converse of Theorem 6 is true.

Theorem 7 Let \(a \) and \(b \) be real numbers with \(a < b \) and let \(f : [a; b] \rightarrow \mathbb{R} \). If \(f \) is continuous at each point of \([a; b]\), then \(f \) is uniformly continuous.

Proof. Suppose that \(f \) is not uniformly continuous. Then there exists \(\varepsilon > 0 \) such that for any \(\delta > 0 \) there exist points \(x \) and \(y \) in \([a; b]\) with \(jx - yj < \delta \) but \(jf(x) - f(y)j > \varepsilon \). In particular for each integer \(n \geq 1 \), there exist points \(x_n \) and \(y_n \) in \([a; b]\) with \(jx_n - y_nj < \frac{1}{n} \) but \(jf(x_n) - f(y_n)j \geq \varepsilon \). Clearly, \(\lim_{n \to \infty} jx_n - y_nj = 0 \).

Since the sequence \(x_n \) is bounded, it must have a cluster point \(c \) in \([a; b]\). This means that there exists a subsequence, \(x_{n_k} \), of \(x_n \) such that \(x_{n_k} \to c \). Since \(jx_{n_k} - y_{n_k}j \to 0 \), it must also be true that \(y_{n_k} \to c \). However, since \(jf(x_{n_k}) - f(y_{n_k})j \to 0 \) for all \(k \geq 1 \), then either \(f(x_{n_k}) \to f(c) \) or \(f(y_{n_k}) \to f(c) \) and we conclude that \(f \) is not continuous at \(c \).

We have shown that if \(f \) is not uniformly continuous, then there exists a point, \(c \in [a; b] \), at which \(f \) is not continuous. This proves the theorem. \(\blacksquare \)

Exercise 8 Example 3 provides an example of a function \(f : [0; 1) \to \mathbb{R} \) that is not uniformly continuous. Give an example of a function \(f : [0; 1) \to \mathbb{R} \) that is uniformly continuous (thus showing that unboundedness of the domain of \(f \) does not rule out the possibility that \(f \) is uniformly continuous).

Exercise 9 Give an example of a set \(D \), and a function \(f : D \to \mathbb{R} \) that is bounded on \(D \) and continuous at each point of \(D \), but not uniformly continuous (thus showing that boundedness and continuity are not sufficient for uniform continuity).

3 Lipschitz Continuity

Theorem 6 states that uniform continuity of \(f : D \to \mathbb{R} \) guarantees continuity of \(f \) at each point in \(D \). Here, we discuss a type of continuity, Lipschitz continuity, that is stronger than uniform continuity.
Definition 10 A function \(f: D \rightarrow \mathbb{R} \) is said to be Lipschitzian (or to satisfy a Lipschitz condition or to be Lipschitz continuous) if there exists a number \(K > 0 \) such that \(|f(x) - f(y)| \leq K |x - y| \) for all \(x \) and \(y \in D \).

Example 11 The function \(f: [0; 4] \rightarrow \mathbb{R} \) defined by \(f(x) = x^2 \) is Lipschitzian because for any \(x \) and \(y \in [0; 4] \), we have
\[
|f(x) - f(y)| = x^2 - y^2 = x + y |x - y| = (|x| + |y|) |x - y| + 8x |y| < K |x - y|,
\]
for \(K = 8 \).

Exercise 12 Let \(a \) and \(b \) be real numbers with \(a < b \) and let \(f: [a; b] \rightarrow \mathbb{R} \) be the function defined by \(f(x) = x^2 \). Show that \(f \) is Lipschitzian.

Exercise 13 Let \(f: [0; 1) \rightarrow \mathbb{R} \) be the function defined by \(f(x) = x/(x^2 + 1) \). Show that \(f \) is Lipschitzian.

Theorem 14 If \(f: D \rightarrow \mathbb{R} \) is Lipschitzian, then \(f \) is uniformly continuous.

Proof. Since \(f \) is Lipschitzian, there exists \(K > 0 \) such that \(|f(x) - f(y)| \leq K |x - y| \) for all \(x \) and \(y \in D \). Thus, if we are given \(\varepsilon > 0 \) and we choose \(\delta = \varepsilon/K \), then for any \(x \) and \(y \) in \(D \) with \(|x - y| < \delta \) we have
\[
|f(x) - f(y)| < K \delta = \varepsilon.
\]

Exercise 15 Give an example of a set \(D \) and a function \(f: D \rightarrow \mathbb{R} \) that is uniformly continuous but not Lipschitzian.

4 The Sequential Approach to Uniform Continuity

Recall that if \(f: D \rightarrow \mathbb{R} \) and \(x_0 \in D \), then \(f \) is continuous at \(x_0 \) if and only if for every sequence of points, \(x_n \), in \(D \) with \(x_n \rightarrow x_0 \), we also have \(f(x_n) \rightarrow f(x_0) \). An equivalent way to state this is that \(f \) is continuous at \(x_0 \) if and only if for every sequence of points, \(x_n \), in \(D \) with \(|x_n - x_0| \rightarrow 0 \), we also have \(|f(x_n) - f(x_0)| \rightarrow 0 \).

There is a similar characterization of uniform continuity in terms of sequences which is given in the following theorem.
Theorem 16 Let \(f : D \to \mathbb{R} \). Then \(f \) is uniformly continuous if and only if for every pair of sequences, \(x_n \) and \(y_n \), of points in \(D \) with \(|x_n - y_n| \to 0 \), we also have \(|f(x_n) - f(y_n)| \to 0 \).

Proof. Suppose that \(f \) is uniformly continuous and let \(x_n \) and \(y_n \) be sequences of points in \(D \) with \(|x_n - y_n| \to 0 \). We must show that it is also true that \(|f(x_n) - f(y_n)| \to 0 \). To do this, we let \(\varepsilon > 0 \) be given and we must find an integer \(m \) such that

\[|f(x_n) - f(y_n)| < \varepsilon \]

for all \(n \geq m \).

Since \(f \) is uniformly continuous, there exists \(\delta > 0 \) such that \(|f(x) - f(y)| < \varepsilon \) for all points \(x \) and \(y \) in \(D \) with \(|x - y| < \delta \). Also, since \(jx_n - y_n| \to 0 \), there exists an integer \(m \) such that \(|x_n - y_n| < \delta \) for all \(n \geq m \). Hence if we take any \(n \geq m \), then \(x_n \) and \(y_n \) are points in \(D \) with \(|x_n - y_n| < \delta \) and it follows that \(|f(x_n) - f(y_n)| < \varepsilon \).

We now prove the converse: Suppose that \(f \) is not uniformly continuous. Then there exists \(\varepsilon > 0 \) such that for any \(\delta > 0 \) there exist points \(x \) and \(y \) in \(D \) with \(|x - y| < \delta \) but \(|f(x) - f(y)| \geq \varepsilon \). In particular, for each integer \(n \geq 1 \), there exist points \(x_n \) and \(y_n \) in \(D \) with \(|x_n - y_n| < 1/n \) but \(|f(x_n) - f(y_n)| \geq \varepsilon \). Clearly, \(|x_n - y_n| \to 0 \) but \(|f(x_n) - f(y_n)| \not\to 0 \).

Example 17 Let us use Theorem 16 to show that \(f : [0; 1) \to \mathbb{R} \) defined by \(f(x) = x^2 \) is not uniformly continuous. (The reader will notice that this is essentially a reworking of Example 3.)

Let \(x_n = n \cdot \frac{1}{n} \) and let \(y_n = n \). Then \(x_n \) and \(y_n \) are sequences of points in \([0; 1) \) with \(|x_n - y_n| = \frac{1}{n} \to 0 \). However,

\[|f(x_n) - f(y_n)| = n + \frac{1}{n} \geq 1 \]

so \(f \) is not uniformly continuous.

Exercise 18 Let \(f : (0; 1) \to \mathbb{R} \) be defined by \(f(x) = 1/x \). Use Theorem 16 to show that \(f \) is not uniformly continuous.