1 What Does The Derivative of f Tell Us About f?

Theorem 1 Suppose that f is a function that is differentiable at all points in some interval I.

1. If $f'(x) > 0$ for all $x \in I$, then f is increasing on I.

2. If $f'(x) < 0$ for all $x \in I$, then f is decreasing on I.
Example 2 The graph of the derivative, f', of a function f is shown below. What does this tell us about f? Suppose that it is also known that $f(0) = 0$. Make a rough sketch of the graph of f in this case.
What Does The Second Derivative of f Tell Us About f?

Theorem 3 Suppose that f is a function that is twice differentiable at all points in some interval I.

1. If $f''(x) > 0$ for all $x \in I$, then f is concave up on I.

2. If $f''(x) < 0$ for all $x \in I$, then f is concave down on I.
Example 4 Sketch a possible graph of a function, f, that satisfies all of the following conditions:

- $f'(x) > 0$ for all $x \in (-\infty, 1)$ and $f'(x) < 0$ for all $x \in (1, \infty)$.
- $f''(x) > 0$ for all $x \in (-\infty, -2)$, and $f''(x) < 0$ for all $x \in (-2, 2)$, and $f''(x) > 0$ for all $x \in (2, \infty)$.
3 Antiderivatives

Definition 5 Suppose that \(f \) is a function whose domain includes some interval \(I \). A function, \(F \), is called an antiderivative of \(f \) on \(I \) if \(F'(x) = f(x) \) for all \(x \in I \).

Example 6 The function \(F(x) = x^2 \) is an antiderivative of the function \(f(x) = 2x \) on the interval \((-\infty, \infty) \) because (as we saw in an earlier example) \(F'(x) = f(x) \) for all \(x \in (-\infty, \infty) \).

However, the function \(F(x) = x^2 + 6 \) is also an antiderivative of the function \(f(x) = 2x \) on the interval \((-\infty, \infty) \). In fact, if \(C \) is any constant, then the function \(F(x) = x^2 + C \) is an antiderivative of the function \(f(x) = 2x \) on the interval \((-\infty, \infty) \). This is why we use the word “an” (rather than “the”) when referring to antiderivatives. When a function \(f \) has an antiderivative on an interval \(I \), then \(f \) always, in fact, has infinitely many antiderivatives on \(I \).

Example 7 Let \(f \) be the function with domain \([0, 5]\) whose graph is shown below and let \(F \) be an antiderivative of \(f \).

![Graph of f](image)

1. On which intervals is \(F \) increasing and on which intervals is \(F \) decreasing?
2. On which intervals is F concave up and on which intervals is F concave down?

3. At which values of x does F have an inflection point?

4. Suppose that $F'(0) = 1$ and make a rough sketch of the graph of F.

5. How many antiderivatives does f have?