1. Match the graphs A–E with their contour (level curve) plots 1–5.
 Answers:
 Graph A matches contour plot ___4____.
 Graph B matches contour plot ___3____.
 Graph C matches contour plot ___2____.
 Graph D matches contour plot ___1____.
 Graph E matches contour plot ___5____.

2. Show that
 \[\lim_{(x,y) \to (0,0)} \frac{x^4}{x^2y^2 + 3y^4} \]
 does not exist.

 Be sure to be detailed and write in sentences.

 Explanation: We will show that the limit has different values for \((x,y) \to (0,0)\) along different paths leading to \((0,0)\). If we let \((x,y) \to (0,0)\) along the path \(y = x\), then we obtain
 \[
 \lim_{y \to x, (x,y) \to (0,0)} \frac{x^4}{x^2y^2 + 3y^4} = \lim_{x \to 0} \frac{x^4}{x^2x^2 + 3x^4} = \lim_{x \to 0} \frac{x^4}{4x^4} = \frac{1}{4}.
 \]

 If we let \((x,y) \to (0,0)\) along the path \(x = 0\), then we obtain
 \[
 \lim_{y \to 0, (x,y) \to (0,0)} \frac{x^4}{x^2y^2 + 3y^4} = \lim_{y \to 0} \frac{0^4}{0^2y^2 + 3y^4} = \lim_{y \to 0} 0 = 0.
 \]

 Therefore the limit in question does not exist.

3. A graph of the function
 \[f(x,y) = (4x - x^2)(4y - y^2), \]
 is shown below. The point (2, 1, 12) is labelled on the graph.
a. Compute the partial derivative f_x and then compute $f_x(2, 1)$.

b. Compute the partial derivative f_y and then compute $f_y(2, 1)$.

c. On the graph that is provided, draw small tangent lines at the point $(2, 1, 12)$ to illustrate the results you found in parts a and b.

d. Do the results that you obtained in part a, b, and c makes sense to you in regard to the graph of f at the point $(2, 1, 12)$? Explain why or why not.

Answers:

We have

\[
\begin{align*}
 f_x &= (4 - 2x)(4y - y^2) \\
 f_y &= (4x - x^2)(4 - 2y).
\end{align*}
\]

Also

\[
\begin{align*}
 f_x(2, 1) &= (4 - 2(2))(4(1) - 1^2) = 0 \\
 f_y(2, 1) &= (4(2) - 2^2)(4 - 2(1)) = 8.
\end{align*}
\]

The value of $f_x(2, 1)$ is the slope of the tangent line to the graph of $z = f(x, 1)$ at the point $(2, 1, 12)$. The value of $f_y(2, 1)$ is the slope of the tangent line to the graph of $z = f(2, y)$ at the point $(2, 1, 12)$. These tangent lines are illustrated below and they do make sense because we can see in the picture that f has zero slope in the x direction at the point $(2, 1, 12)$ and has positive slope in the y direction at $(2, 1, 12)$.
4. For the function f given in Question 3:
 a. Compute f_{xx} and f_{yy} and then compute $f_{xx}(2, 1)$ and $f_{yy}(2, 1)$
 b. Explain what the values of $f_{xx}(2, 1)$ and $f_{yy}(2, 1)$ tell you about the graph of f at the point $(2, 1, 12)$.
 c. Compute f_{xy} and f_{yx}.
 d. You should have found in part c that $f_{xy} = f_{yx}$. Is this unusual? Explain.

Answers: In Question 3 we found

$$f_x = (4 - 2x)(4y - y^2)$$
$$f_y = (4x - x^2)(4 - 2y).$$

From this we obtain

$$f_{xx} = -2(4y - y^2)$$
$$f_{yy} = -2(4x - x^2)$$

and

$$f_{xx}(2, 1) = -2(4(1) - 1^2) = -6$$
$$f_{yy}(2, 1) = -2(4(2) - 2^2) = -8$$

These values, since they are both negative, tell us that the graph of f is concave down in both the x direction and the y direction at the point $(2, 1, 12)$. This can be seen to be correct by looking at the picture given in Question 3. Also

$$f_{xy} = (4 - 2x)(4 - 2y)$$
$$f_{yx} = (4 - 2x)(4 - 2y).$$

It turns out that $f_{xy} = f_{yx}$ as expected because f_{xy} and f_{yx} are both continuous functions and thus Clairaut’s Theorem guarantees that $f_{xy} = f_{yx}$.

5. Suppose that
\[z = e^{x^2+y} \]
\[x = \cos(s) - \sin(t) \]
\[y = 3e^{s+t}. \]

Compute \(\frac{\partial z}{\partial t} \) and then find the value of \(\frac{\partial z}{\partial t} \bigg|_{(s,t) = (0,0)} \).

Solution: By the Chain Rule,
\[
\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \\
= \left(2xe^{x^2+y}\right)(-\cos(t)) + \left(3e^{x^2+y}\right)(3e^{s+t}) \\
= -\left(2xe^{x^2+y}\right)(\cos(t)) + \left(3e^{x^2+y}\right)(3e^{s+t}).
\]
Notice that when \((s,t) = (0,0)\) we have
\[
x = \cos(0) - \sin(0) = 1 \\
y = 3e^{0+0} = 3
\]
and thus
\[
\frac{\partial z}{\partial t} \bigg|_{(s,t) = (0,0)} = -\left(2(1)e^{1^2+3(0)}\right)(\cos(0)) + \left(3e^{1^2+3(0)}\right)(3e^{0+0}) = 7e^{10}.
\]

6. For the function
\[
f(x,y) = (4x - x^2)(4y - y^2)
\]
(whose graph is shown in Question 3):
 a. Find \(\nabla f(x,y) \).
 b. Find \(\nabla f(2,1) \).
 c. In what direction is \(f \) increasing most rapidly at \((x,y) = (2,1)\)? (Give the unit vector, \(\mathbf{u} \), that points in the direction of greatest increase.)
 d. For the unit vector, \(\mathbf{u} \), that you gave in part c, what is the value of \(D_u f(2,1) \)?

Answers: We have
\[
\nabla f(x,y) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} = (4 - 2x)(4y - y^2) \mathbf{i} + (4x - x^2)(4 - 2y) \mathbf{j}
\]
and
\[
\nabla f(2,1) = \frac{\partial f}{\partial x}(2,1) \mathbf{i} + \frac{\partial f}{\partial y}(2,1) \mathbf{j} = 8\mathbf{j}.
\]
We know that \(f \) increases most rapidly at \((x,y) = (2,1)\) in the direction of \(\nabla f(2,1) \). The unit vector pointing in this direction is \(\mathbf{u} = \mathbf{j} \). In this direction we have
\[
D_u f(2,1) = |\nabla f(2,1)| = |8\mathbf{j}| = 8|\mathbf{j}| = 8.
\]