Path Independence, Potential Functions, and Conservative Vector Fields

Outline of Section 13.3 of Hass, Weir, Thomas
Definition

Let \mathbf{F} be a vector field defined on an open set D in \mathbb{R}^3 (or \mathbb{R}^2). We say that \mathbf{F} is a conservative vector field and we also say that $\int \mathbf{F} \cdot d\mathbf{r}$ is path–independent if for any two points, A and B, in D, the value of

$$\int_{C} \mathbf{F} \cdot d\mathbf{r}$$

is the same for all choices smooth curves, C, connecting A to B.
Example

Let $D = R^2$ and let $\mathbf{F}(x, y) = -10\mathbf{j}$.
Show that \mathbf{F} is conservative and that
$\int \mathbf{F} \cdot d\mathbf{r}$ is path–independent.
Definition

If f is a real–valued function defined on D and
$F(x, y, z) = \nabla f(x, y, z)$ for all points $(x, y, z) \in D$,
then we say that f is a potential function for F on D.
Example

Let $D = \mathbb{R}^2$ and let $F(x,y) = -10\mathbf{j}$.
Find a potential function for F on D.
Example

Let $D = \mathbb{R}^3$ and let

$$F(x, y, z) = (e^x \cos(y) + yz)i + (xz - e^x \sin(y))j + (xy + z)k.$$

Find a potential function for F on D.

Theorem (The Fundamental Theorem of Calculus for Line Integrals)

Let \(C \), given by \(\mathbf{r}(t) \), be a smooth curve in space or in the plane jointing the point \(A \) to the point \(B \). Let \(f \) be a differentiable function with a continuous gradient vector, \(\mathbf{F} = \nabla f \) on a domain containing the curve \(C \). Then

\[
\int_{C} \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A).
\]
Example

Let $D = \mathbb{R}^2$ and let $F(x, y) = -10\mathbf{j}$.

Let C be any smooth curve in \mathbb{R}^2 joining the point $(0, 5)$ to the point $(5, 0)$.

Compute

$$\int_C F \cdot \, dr.$$
Example

Let $D = \mathbb{R}^3$ and let

$$\mathbf{F}(x, y, z) = (e^x \cos(y) + yz)\mathbf{i} + (xz - e^x \sin(y))\mathbf{j} + (xy + z)\mathbf{k}.$$

Let C be any smooth curve in \mathbb{R}^3 joining the point $(-1, 3, 9)$ to the point $(1, 6, -4)$.

Compute

$$\int_C \mathbf{F} \cdot d\mathbf{r}.$$
Theorem

Let \(\mathbf{F}(x,y,z) = M(x,y,z)\mathbf{i} + N(x,y,z)\mathbf{j} + P(x,y,z)\mathbf{k} \) be a vector field on a connected and simply connected domain and suppose that the component functions \((M,N, P)\) all have continuous first order partial derivatives on \(D \). Then the following statements are equivalent (meaning that these statements are either all true or all false).

1) \(P_y = N_z \) and \(M_z = P_x \) and \(N_x = M_y \) at all points \((x,y,z) \in D \).
2) There exists a function \(f \) on \(D \) such that \(\mathbf{F} = \nabla f \).
3) \(\mathbf{F} \) is conservative on \(D \).
4) \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \) around every closed loop, \(C \), that lies in \(D \).
Remark

If F is conservative on D, and A and B are any two points in D, and C is any smooth curve that joins A to B and is contained in D, then it makes sense to write

$$\int_C F \cdot dr = \int_A^B F \cdot dr$$

because the value of the integral does not depend on the curve C that is chosen (as long as the curve joins A to B). This integral can also be written as

$$\int_A^B Mdx + Ndy + Pdz.$$
Definition

Any expression of the form

\[M(x,y,z)dx + N(x,y,z)dy + P(x,y,z)dz \]

is called a **differential form**. A differential form is said to be **exact** on a domain \(D \) if

\[Mdx + Ndy + Pdz = f_x dx + f_y dy + f_z dz \]

for some function \(f \) at all points \((x,y,z) \in D \).
Example

Show that the differential form

\[yz \, dx + xz \, dy + xy \, dz \]

is exact and then evaluate the integral

\[\int_{(1,1,2)}^{(3,5,0)} yz \, dx + xz \, dy + xy \, dz. \]